Модель Уиппла проста, поэтому не может объяснить тонкостей. Если исходить из этой модели, то льды разных летучих соединений должны испаряться с разными скоростями и, что самое главное — при разных температурах, а значит, на разных расстояниях от Солнца. Но это не подтверждают спектральные наблюдения. В 1952 г. модель Уиппла усовершенствовали П. Свинге и А. Дельзем, предположив, что в кометные ядра входят не чистые льды летучих веществ, а их гидраты. В каждое из таких соединений наряду с «родительской» молекулой вещества входят и несколько молекул воды, число которых определяется свойствами родительской молекулы. Такие сложные гидраты могут образовываться в космическом вакууме при очень низких температурах. По физическим свойствам все они очень схожи, в частности, испаряются примерно при одинаковой температуре и с близкими скоростями.
Современные модели «новых» комет представляют ядро как очень рыхлое образование, типа гигантского снежного кома. После многократных прохождений близ Солнца «новая» комета стареет, ее ядро уменьшается за счет потери большей части летучих из поверхностного слоя и покрывается коркой из нелетучих соединений.
С другой стороны, ядра «старых» комет, к которым относят и комету Галлея, хорошо описываются «пятнистой» моделью. Такое название связано с предположением о том, что в поверхностной теплоизолирующей корке имеются дыры, трещины или другие обнажения подкоркового вещества с высоким содержанием летучих соединений, из которых происходит интенсивная сублимация этих веществ, вплоть до истечения газовых струй, способных вызывать реактивное ускорение кометного ядра.
Массы ядер комет, вероятно, лежат в пределах от нескольких тонн (мини-кометы) до 1011—1012 т. Измерить массы кометных ядер пока не удается по причине их малости. Более или менее точно удалось оценить только массу ядра кометы Галлея по его гравитационному влиянию на космические зонды «Вега-1 и -2» (СССР) и «Джотто» (ЕКА), сблизившиеся с ним в марте 1986 г. В тот момент масса ядра была близка к 6x1011 т.
Тогда же было подтверждено, что ядро кометы Галлея представляет ледяную глыбу (по форме напоминающую картофелену. Размер этого тела вдоль большой оси около 14 км., а вдоль двух малых осей — по 7,5 км. Ядро вращается вокруг малой оси с периодом 53 часа. Температура поверхности ядра на расстоянии 0,8 а.е. от Солнца была 360 К (87°С). Поверхность ядра оказалась очень темной, отражающей лишь 4% света (примерно как свеженакатанный асфальт). Вероятно, ледяное тело кометы действительно покрыто теплоизолирующим слоем из тугоплавких частиц (металлов, серы, кремния, их окислов и других соединений), существование которого предполагал Уиппл в своей модели. Там, где лед испаряется, струи водяного пара, углекислого и других газов вместе с пылью вырываются из-под коры. В момент прохождения перигелия комета каждую секунду теряла около 45 т. газообразных соединений и 5-8 т. пыли.
Легко подсчитать, что запасов летучего вещества должно хватить комете Галлея на сотню тысяч лет. За это время она может совершить еще около 1300 оборотов вокруг Солнца, а затем, вероятно, пополнит число вымерших комет. Это бывшие кометные ядра, которые уже не проявляют признаков активности и по наблюдаемым характеристикам ничем не отличаются от астероидов.
При прохождении Земли через кометные хвосты не было замечено никаких, даже самых незначительных эффектов. Опасность для Земли могут представлять только кометные ядра. Подтверждением этого, служит явление «Тунгусского метеорита», случившееся 17 (30) июня 1908 г. в безлюдном таежном районе Сибири, в бассейне р. Подкаменная Тунгуска. В действительности, это уникальное природное событие закончилось не падением на землю метеорита, а мощным взрывом в атмосфере, на высоте около 10 км. Энергия взрыва составила 1016—1017 Дж, что эквивалентно 10-мегатонной бомбе. Произошел массовый вывал леса в радиусе 15—30 км., но ни вещества метеорита, ни кратера от его падения найдено не было. Отсутствие космических обломков стало одним из основных аргументов в пользу кометной природы Тунгусского тела. Если оно состояло из замерзших летучих веществ, то могло полностью испариться при резком торможении и взрыве в земной атмосфере. Астрономы И.Т. Зоткин и Л. Кресак независимо показали, что координаты радианта Тунгусского метеорита (т.е. направление, откуда он двигался) совпадают с координатами радианта метеорного потока Таурид, связанного с кометой Энке (2P/Encke).