Среди звонких согласных есть только одна шипящая, буква – ж, а среди глухих три шипящих, поэтому:
Два множества называются
и
Множество гласных букв и множество согласных букв не имеют общих элементов – они непересекающиеся:
Дополнением множества глухих согласных до множества всех согласных будет множество звонких согласных:
Теперь попробуйте самостоятельно объяснить словами следующие символические записи и проверьте их правильность:
Для графической иллюстрации отношений, которые могут иметь место между различными множествами, часто используют так называемые диаграммы Венна. На этих диаграммах множества условно изображаются геометрическими фигурами с соблюдением отношений включения, пересечения и т. д.
В наших рассуждениях все рассматриваемые множества являются подмножествами по отношению к множеству всех букв русского алфавита
На первой диаграмме Венна показаны названия множеств, без состава их элементов, но с соблюдением отношений включения и пересечения. В данном примере самое большое множество, включающее в себя все остальные в качестве подмножеств – это множество всех букв русского алфавита. Далее даем подробную диаграмму без названий множеств, но с изображением конкретного состава элементов каждого из них.
Теперь с целью расширения кругозора и в качестве исходной базы для последующих упражнений введем еще несколько буквенных множеств, основанных на алфавитах других языков. Для простоты изложения будем рассматривать только маленькие (строчные) буквы. Возьмем уже известную нам латиницу
В эстонском алфавите 23 основных буквы, которые употребляются для передачи слов родного языка, и 9 букв (f, s, z, z, c, q, w, x, y) используемых только в недавних заимствованиях из других языков и иноязычных именах собственных.
В казахский алфавит полностью входят 33 буквы русского алфавита, три буквы из латинского алфавита (, h, i) и шесть своеобразных букв (, , , , , ), – всего 42 буквы.
[?-1]
Определите множества, которые получатся в результате следующих операций:
Примечание: В данном упражнении нас интересует только графическая сторона вопроса. Если рассматривать алфавиты так, как они записаны здесь – маленькими буквами, то у русского и латинского алфавитов есть одинаковые знаки: а, с, е, …, поэтому их пересечение не является пустым множеством.
[?-2]
Верны ли следующие утверждения:
[?-3]
Постройте диаграммы Венна для следующих множеств, считая универсальным множество всех алфавитов:
В процессе работы над книгой меня постоянно волновал вопрос: кому это будет нужно? Учитель-словесник отмахнется от математики, зачем ему теория множеств, учитель математики отмахнется от букв, алфавитов, слов, потому что ему всегда удобнее объяснять материал на числах и получится мой труд ради собственного удовольствия. Изрядную долю сомнений вносили знакомые учителя, зачастую именно так и высказываясь. Но меня не покидает надежда, что молодое поколение учителей будет мыслить по-другому, шире и разностороннее. Ученикам никогда не будет интересна нудная, хотя и необходимая, зубрежка правил, и, чтобы не отбить окончательно у них желание учиться, нужно использовать любую возможность сделать свой предмет увлекательным. Кому станет хуже, если на математике ученики повторят русский алфавит, распределение его букв по видам, узнают новые алфавиты.
Топология букв
Еще немного чистой математики, причем не изучаемой в школе, применительно к языковому исходному материалу. Посмотрим на буквы с точки зрения топологии.