Читаем Слепой геометр полностью

ОАА'. Когда Джереми снова привел Мэри Унзер, я не стал тратить время на разговоры — достал бумагу и карандаши и усадил женщину за кофейный столик, а еще расставил перед ней свои модели: субатомные частицы на проволочных стержнях, похожие на струю воды из рассекателя; тейлоровы палочки, смахивающие на соломинки и предназначенные для конструирования моделей; полиэдрические фигуры самых разных форм. Потом сел рядом, разложив на столике листы с выпуклыми чертежами и поставив модели, которые попытался по ним изготовить, и начал задавать весьма конкретные вопросы:

— Что означает эта линия? Она проходит спереди или сзади? Я правильно понял?

Мэри отвечала то смешком, то «нет-нет» (тут проблем с порядком слов не возникало) и принималась чертить. Я брал готовые листы, пропускал через ксерокс, вынимал и позволял ей водить по чертежам моей ладонью. Но дело продвигалось туго; издав раздраженный возглас, Мэри вернулась к моделям, начала соединять между собой треугольники, составлять прямые. Впрочем, здесь мы тоже далеко не ушли.

— Нужно чертить, — сказала она.

— Понятно. Тогда пишите и читайте.

Мы продолжали работать: она писала и либо читала, либо передавала страницы мне, а я пропускал их через ксерокс в режиме «перевод в шрифт Брайля». Джереми, судя по всему, внимательно наблюдал за происходящим.

Постепенно мы подобрались очень близко к сути моих исследований. (Холодное прикосновение.) Предположив, что субатомные частицы совершают свои «прыжки» в микроизмерениях, я разработал n-мерную топологическую систему, где n больше единицы и меньше бесконечности, поэтому изучаемый континуум находится в промежутке между единицей и некоторым конечным числом измерений, переходя из кривой в нечто, если хотите, вроде швейцарского сыра, в зависимости от количества энергии, проявляемой в пространстве в любой из четырех форм — электромагнетизме, гравитации, а также в форме сильных и слабых взаимодействий. Геометрия этой системы, столь схожей с опытным, тактильным пространством, привлекла, как я уже сказал, внимание физиков, однако исследования еще не были доведены до конца, и я не публиковал даже промежуточных результатов.

И вот я сижу в своем кабинете и «общаюсь» с молодой женщиной, которая в обычном разговоре не может правильно построить фразу, однако на математическом языке изъясняется вполне понятно и рассуждает, интересуется моей мало кому известной работой.

Той, о которой меня столь часто и с большим любопытством расспрашивал Джереми Блесингейм.

Я вздохнул и откинулся на подушки. Наша беседа.растянулась на два или три часа. Мэри пожала мою руку. Я не знал, что думать.

— Я устал.

— А мне лучше, — откликнулась она. — Так разговаривать проще.

— Да? — Я взял в руки модель позитрона, врезающегося в «стационарный» мюон: проволочное дерево, ствол которого неожиданно превращается в густую крону… Ряд событий, невообразимое количество объяснений… Впрочем, большинство частиц летело в одном направлении (словно истины осязательного пространства).

Мэри отпустила свою ладонь и взялась рисовать последний чертеж, с которого потом сделала ксерокс, после чего приставила мои пальцы к выпуклым линиям.

Снова теорема Дезарга: треугольники АВС и А'В'С", проецируемые из точки О. Правда, на сей раз оба треугольника находились в одной плоскости, прямые АВ и А'В' были параллельны, как. ВС и В'С', АС и А'С'. Точки Р, О и К превратились в идеальные. Мэри вновь и вновь ставила мои пальцы в те места, где располагались эти точки.

С. Пожалуй, следует объяснить поподробнее, ибо теперь мы оставляем позади мир евклидовой геометрии.

Геометрия обычных точек и прямых (евклидова) значительно осложняется тем фактом, что две параллельные прямые не встречаются ни в одной точке. Почему? Изменение пятой теоремы Евклида относительно параллельных прямых привело к появлению первых неевклидовых геометрий Лобачевского, Больяи и Римана. Чтобы войти в изменившийся мир, необходимо всего лишь прибавить к обычным точкам каждой прямой по одной «идеальной». Эта точка принадлежит всем прямым, параллельным данной. Отныне каждая пара прямых на плоскости будет пересекаться в одной точке: непараллельные в обычной, а параллельные — в идеальной, общей для двух прямых. Кто-то догадался назвать такую точку «точкой в бесконечности».

Понятие идеальности можно распространить и на другие геометрические фигуры: все точки в бесконечности на одной плоскости лежат на прямой в бесконечности; все прямые в бесконечности находятся на плоскости в бесконечности; идеальная плоскость располагается в пространстве, за пределами остальных, а все идеальные плоскости — в пространстве в бесконечности, в следующем измерении. И так далее, до энного измерения. В осязательном пространстве невскианской геометрии я ощущаю присутствие этих идеальных миров, ибо за отдельными идеальными плоскостями-мембранами, что вне моей досягаемости, существуют идеальные действия, которые я могу только воображать, только желать…

Перейти на страницу:

Похожие книги