Читаем Следы былых биосфер полностью

Климатические условия являются для болотообразования «пусковым механизмом». В процессе развития торфяника роль климатических факторов уменьшается. Болото постепенно становится экосистемой, в значительной мере развивающейся по своим внутренним законам и сравнительно мало зависящей от внешней среды. Подчеркивая специфичность условий образования каустобиолитов, известный советский геолог К. Г. Войновский-Кригер (1894—1979) писал: «Накопление растительной массы, очевидно, подчинено не таким закономерностям, как накопление песка и алеврита: кроме геоморфологического фактора, здесь участвует и, может быть, играет основную роль биологический фактор». А наибольшие шансы перейти в ископаемое состояние имеют приморские и прибрежно-озерные торфяники в зонах прогибания земной коры.

Другим типом экосистем, где происходит накопление необиогенного органического вещества, являются континентальные водоемы. Здесь в противоположность торфяникам накапливаются главным образом не остатки высших растений, а «сапропель» (по-гречески это значит «гнилой ил»): скопление остатков фито‑ и зоопланктона, донных и свободноплавающих организмов и экскрементов животных.

Наконец, биогенное органическое вещество накапливается и в морских экосистемах, главным образом в мелководных лагунах. Основным фактором, который контролирует накопление необиогенного вещества в Мировом океане, является циркумконтинентальная зональность. По данным известного советского геохимика, лауреата премии им. В. И. Вернадского Евгения Александровича Романкевича, в периферических районах океана накапливается 87% всего органического вещества океана, в краевой части ложа — 10%, а в центральных областях — только 3%.

Рис. 14. Схема формирования каустобиолитов и карбонатных пород в биосфере: 1 — организмы — сапропелеобразователи; 2 — карбонатные организмы

Так происходит накопление органического вещества в современной биосфере. Тем же путем происходило накопление биогенной органики и в геологическом прошлом (рис. 14). «Образование каменных углей имеет связь с болотами, с большими скоплениями растений, свойственными странам с сырым климатом, в устьях и дельтах больших рек, в равнинах их бассейнов, на берегах континентов и островов, в низинах областей приливов и отливов. Это все большие сгущения жизни, где масса органической материи, находящейся в состоянии медленного разложения, огромна. Возможно, что это самые большие сгущения жизни, нам вообще известные на суше», — писал Вернадский[72].

Ископаемые угли известны с девона — с того времени, когда в биосфере возникли леса. Черные, на первый взгляд невзрачные, ископаемые угли под микроскопом в шлифах чаруют гаммой оранжево-красных тонов. Сложены они большей частью углефицированными растительными тканями (их называют фитералами: суффикс тот же, что и в слове «минерал», а корень «фито» по-гречески — растение). В последнее время разработаны методы их диагностики: определяют исходный орган растения, его систематическую принадлежность и способ превращения. По этим данным можно составить представление о растительности, послужившей исходным материалом для формирования угля. Состав углей в ходе геологической истории существенно менялся. В карбоновых углях много спор; в позднекарбоновых углях впервые появляются массивные стволы древесных растений (раньше древесные растения были преимущественно трубчатыми, как сейчас бамбук, или же обладали рыхлой центральной частью — как камыш); в мезозое встречаются угли, спрессованные из листьев голосеменных или из иголочек смолы; для палеогена и неогена характерны лигниты — остатки хвойных с макроскопически различимой структурой древесины и т. д.

Биогенное вещество, образованное гетеротрофами, в углях встречается довольно редко; главным образом это грибы, в палеогеновых и неогеновых углях наиболее распространенные. Найдены также остатки бактерий, членистоногих, позвоночных. Самые удивительные находки сделаны на двух буроугольных месторождениях Центральной Европы: Гейзельталь (палеоген) в ГДР и Турув (неоген) в Польше. Здесь найдены остатки богатой и разнообразной фауны позвоночных (вспомним цитированные выше слова Вернадского о «самых больших сгущениях жизни»): рыб, земноводных, пресмыкающихся (крокодилов, ящериц, змей), птиц, наконец, млекопитающих: тапиров, лошадей, сумчатых крыс, летучих мышей, полуобезьян. А в угле одного из небольших месторождений Италии известный западногерманский углепетрограф М. Тайхмюллер описала останки молодой особи «почти человека» — человекообразной обезьяны близкого нам рода. Малыш утонул в болоте…

Перейти на страницу:

Похожие книги

100 великих тайн Земли
100 великих тайн Земли

Какой была наша планета в далеком прошлом? Как появились современные материки? Как возникли разнообразные ландшафты Земли? Что скрывается в недрах планеты? Научимся ли мы когда-нибудь предсказывать стихийные бедствия? Узнаем ли точные сроки землетрясений, извержений вулканов, прихода цунами или падения метеоритов? Что нас ждет в глубинах Мирового океана? Что принесет его промышленное освоение? Что произойдет на Земле в ближайшие десятилетия, глобальное потепление или похолодание? К чему нам готовиться: к тому, что растает Арктика, или к тому, что в средних широтах воцарятся арктические холода? И виноват ли в происходящих изменениях климата человек? Как сказывается наша промышленная деятельность на облике планеты? Губим ли мы ее уникальные ландшафты или спасаем их? Велики ли запасы ее полезных ископаемых? Или скоро мы останемся без всего, беспечно растратив богатства, казавшиеся вечными?Вот лишь некоторые вопросы, на которые автор вместе с читателями пытается найти ответ. Но многие из этих проблем пока еще не решены наукой. А ведь от этих загадок зависит наша жизнь на Земле!

Александр Викторович Волков

Геология и география