Extremely difficult but specific objectives (e.g., a spy plane flying at 85,000 feet with a range of 6,000 miles) and the freedom to take risks—and fail—define the heart of a Skunk Works operation. That means hiring generalists who are more open to nonconventional approaches than narrow specialists. A Skunk Works is allowed to be less profitable than other divisions in a corporation only if its projects are not financial back-breakers and are limited to producing about fifty units or so. Going “skunky” is a very practical way to take modest risks, provided that top management is willing to surrender oversight in exchange for a truly independent operation that can make everyone look good if its technology innovations really catch on, as with stealth. By keeping low overhead and modest investment, a Skunk Works failure is an acceptable research and development risk to top management.
Frankly, in today’s austere business climate I don’t think a Skunk Works would be feasible if it could not rely on the resources of the parent entity to supply the facilities, tools, and workers for a particular project and then return them to the main plant when the task is completed. But given the right project and motivation, even the usually rigid corporate controls dominating Detroit automakers can benefit enormously from a Skunk Works–style operation for new product research and development, as Ford Motor Company proved recently in producing a new model of its classic Mustang automobile.
For many years the idea of reopening that once popular line of cars was rejected by company executives as being prohibitively expensive. Development costs were projected at more than $1 billion. But in 1990, management put together an ad hoc Skunk Works operation called Team Mustang, composed of designing and marketing executives and expert shop people, swore them to secrecy, then instructed them to design and produce a new Mustang for 1994. Most important, management allowed Team Mustang to do the job with a minimum of second-guessing and management interference. The result: the group took three years and spent $700 million to produce a new vehicle that was extremely well received and became one of Ford’s hottest sellers. That represents 25 percent less time and 30 percent less money spent than for any comparable new car program in the company’s recent history.
General Motors is now following Ford and has started a separate and secret development group of its own for future projects. Four or five aerospace companies now claim to have a Skunk Works. McDonnell Douglas calls its group Phantom Works, and it apparently emulates what we tried to do at Lockheed. Overseas, the Russians and the French have evolved the most sophisticated Skunk Works operations modeled on Kelly Johnson’s original principles. The French aerospace company Dassault-Breguet probably has the best operation in Europe. The concept is beginning to spread, and the ground is certainly fertile because there are only a few thousand days remaining before twenty-first-century technology becomes a reality.
At our own Skunk Works nowadays we are investigating development of vertical landing airplanes and the feasibility of hypersonic airplanes to carry space stations into orbit because rockets are so horribly expensive. We are looking into dirigibles as the ultimate heavy-lift cargo transports, perhaps a better and safer way to ship crude oil around the world than vulnerable tanker ships. We could build dirigibles double-hulled for additional environmental safety and fly them high above violent weather systems. We are researching new uses of composite materials used in our stealth airplane and ship prototypes. These materials never corrode or rust and might be used in new bridges. We are also mulling over better methods to speed up the handling and transportation of large volumes of products.
On the military side, the end of the cold war has brought some welcome new thinking into the military development and procurement areas. Avoiding casualties is now a political imperative for any administration, and the search is on to find new nonlethal disabling weapons that can knock out hardware but leave troops relatively unharmed. There are techniques, for example, to disable a tank without killing its crew by using sprays that crystallize metals or supersticky foams that clog traction. Research is underway to perfect powerful sound generators tuned to frequencies that incapacitate humans without causing any lasting harm. This wall of agonizing sound stops troops in their tracks. So can stunning devices and nonlethal gases being researched, as well as laser rifles firing optical munitions that explode dazzling light brighter than a dozen flashbulbs, causing temporary blindness. Another possibility is an immensely powerful jammer that puts out so much energy that it shuts down all enemy communications or missile defense systems.