Читаем Схемотехника аналоговых электронных устройств полностью

Так как расчет функции чувствительности сводится к расчету передаточных функций, то для их нахождения возможно применение, например, обобщенного метода узловых потенциалов. Косвенный метод расчета по передаточным функциям позволяет находить функции чувствительности более высоких порядков. На рисунке 8.4б проиллюстрировано нахождение функции чувствительности второго порядка. В общем же существует n! путей передачи сигнала, каждый из которых содержит n+1 сомножителей.

Ниже описывается метод расчета функции чувствительности, сочетающий прямой метод дифференцирования и косвенный по передаточным функциям, позволяющий за один анализ находить чувствительность к n элементам схемы [18]. Рассмотрим данный способ на примерах получения выражений для абсолютной чувствительности первого порядка S-параметров электронных схем, описанных матрицей проводимости [Y].

В матричном представлении характеристики электронных схем, в том числе и параметры рассеяния [S], определяются в виде отношений алгебраических дополнений матрицы [Y] (см. подраздел 7.2). Изменяемый параметр входит при этом в некоторые элементы алгебраических дополнений. Определение функции чувствительности сводится в этом случае к нахождению производных от отношений алгебраических дополнений (или алгебраических дополнений и определителя) по элементам, в которых содержится изменяемый параметр. В случае, когда изменяемый параметр входит в элементы дополнений определителя функционально, чувствительность определяется как сложная производная.

Для определения производных алгебраических дополнений по изменяемым параметрам входящих в них элементов воспользуемся теоремой, утверждающей, что производная определителя по какому-либо элементу равна алгебраическому дополнению этого элемента. Доказательство теоремы основано на разложении определителя по Лапласу

Общее выражение для S-параметров через алгебраические дополнения имеет вид (см. подраздел 7.2)

Sij = kijΔji/Δ – δij.

Определим функции чувствительности параметров рассеяния к пассивному двухполюснику yo включенному между произвольными узлами k и l (см. рисунок 8.5а)

Рисунок 8.5. Расчёт чувствительности S-параметров

SSijy0 = dSij/dy0 = kijji(k+l)(k+l)Δ – Δ(k+l)(k+l)Δji)/Δ² = –kijΔj(k+l)Δ(k+l)i/Δ²  = –kij[(Δjk – Δjl)(Δki – Δli)]/Δ²

При получении данного и последующих выражений используются следующие матричные соотношения [3]:

Δ(i+j)(k+l) = Δi(k+l) + Δj(k+l) = (Δik – Δil) + (Δjk – Δjl),

ΔijΔkl – ΔilΔkl = ΔΔij,kl.

Для электронных схем, содержащих БТ, моделируемые ИТУТ (см. подраздел 2.4.1), определим чувствительность S-параметров к проводимости управляющей ветви gэ=1/rэ и параметру управляемого источника a включенных соответственно между узлами k, l, и p, q (рисунок 8.5б):

SSij = dSij/dgэ = kij[(Δji(k+l)(k+l)Δ + αΔij(k+l)(p+q))Δ – (Δ(k+l)(k+l)Δ+αΔ(k+l)(p+q)Δij])/Δ² = –kijΔ(k+l)ij(k+l) + αΔj(p+q))/Δ²  = –kijki Δli)[(Δjk Δjl)+ α(Δjp - Δjq)/Δ²,

SSijα = dSij/dα = kijji(k+l)(p+q)Δ – Δ(k+l)(p+q)Δji)/Δ² = –kijΔj(p+q)Δ(k+l)i/Δ²  = –kij[(Δjp Δjq)(Δki Δli)]/Δ².

Если электронная схема содержит ПТ, моделируемые ИТУН (см. подраздел 2.4.1), то чувствительность параметров рассеяния к крутизне S, включенной между узлами p, q при узлах управления k, l (рисунок 8.5в), равна

SSijS = dSij/dS = kijji(k+l)(p+q)Δ – Δ(k+l)(p+q)Δji)/Δ² = –kijΔj(k+l)Δ(p+q)i/Δ²  = –kij[(Δjk Δjl)(Δpi Δqi)]/Δ².

Чувствительность параметров рассеяния к любому Y-параметру подсхемы (рисунок 8.5г), например, ykl, будет равна

SSijykl = dSij/dykl = kijji,klΔ – ΔklΔij)/Δ² = –kijΔjlΔki/Δ².

При известной чувствительности ykl к параметру элемента подсхемы x (см. рисунок 8.5г) чувствительность S-параметров полной схемы к этому параметру, в соответствии с понятием сложной производной, выразится как

SSijx = (dSij/dykl)(dykl/dx) = SSijykl·Syklx.

Последнее выражение указывает на возможность применения метода подсхем при анализе чувствительности сложных электронных схем.

Зная связь параметров рассеяния с вторичными параметрами электронных схем (KU, Zвх, Zвых и др.) и чувствительность параметров рассеяния к изменению элементов схемы, возможно нахождение функций чувствительности вторичных параметров к изменению этих элементов. Например, для коэффициента передачи по напряжению с i-го на j-й узел Kij=Sji/(1+S11) чувствительность к изменению параметра x (полагая, что Sij=f(x) и Sii=φ(x)) получаем

SKijx = dKij/dx = [SSijx(1 + Sii) – SSiixSij]/(1 + Sii)².

Аналогично для Zвх(вых) (Zii(jj)) имеем

Zii(jj) = Zг(н)·(1 + Sii(jj))/(1 – Sii(jj));

SZii(jj)x = dZii(jj)/dx = –2Zг(н)·SSii(jj)x·Sii(jj)/(1 – Sii(jj))².

Перейти на страницу:

Похожие книги

GPS: Все, что Вы хотели знать, но боялись спросить
GPS: Все, что Вы хотели знать, но боялись спросить

Определение своего положения с помощью GPS навигатора, отдельного прибора, или устройства, встроенного в карманный компьютер или сотовый телефон, уже стало совершенно обычной вещью.Постепенно столь же привычным становится определение положения объекта с помощью систем телематики на основе GPS/GSM/GPRS, когда на мониторе компьютера или экранчике сотового телефона можно увидеть участок карты с отметкой, где находится другой человек или его автомобиль.«GPS» — это первые буквы английских слов «Global Positioning System» — глобальная система местоопределения. GPS состоит из 24 искуственных спутников Земли, сети наземных станций слежения за ними и неограниченного количества пользовательских приемников-вычислителей. «GPS» предзначенна для определения текущих координат пользователя на поверхности Земли или в околоземном пространстве.По радиосигналам спутников GPS-приемники пользователей устойчиво и точно определют текущие координаты местоположения. Погрешности не превышают десятков метров. Этого вполне достаточно для решения задач НАВИГАЦИИ подвижных объектов (самолеты, корабли, космические аппараты, автомобили и т.д.).Как и многие многоцелевые вещи в нашем быту, приемник системы глобального позиционирования (GPS) по мере знакомства с ним обнаруживает массу полезных свойств, даже сверх тех, для которых он был приобретен первоначально. Оказывается существует много любопытных вопросов, на который он с легкостью отвечает, — например, какую скорость вы развиваете при ходьбе, какое расстояние вы преодолеваете при занятии бегом и с какой максимальной и средней скоростью, какую скорость вы развили, спускаясь с горы на лыжах, насколько точен спидометр вашего автомобиля и т. д. Однако основное его назначение — определение координат.

Б. К. Леонтьев , Борис Константинович Леонтьев

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов / Компьютерное «железо» / Книги по IT
Wi-Fi: Все, что Вы хотели знать, но боялись спросить
Wi-Fi: Все, что Вы хотели знать, но боялись спросить

Жизнь современного человека — это движение. Мобильность для нас становится одним из самых важных моментов для работы, для общения, для жизни. Многие из нас сейчас уже не представляют жизнь без сотовых телефонов, которые из средства роскоши превратились в предмет, без которого жизнь современного человека стала просто немыслима. Многие уже оценили все преимущества Bluetooth, GPRS. Эти устройства превратили наши телефоны из средств связи в незаменимых помощников в работе. К сожалению, один из самых главных недостатков этих беспроводных технологий — малый радиус действия и низкая скорость передачи данных, что сейчас становится очень важным фактором для всех нас. Поэтому к нам на помощь приходит активно развивающийся во всем мире и в России стандарт Wi-Fi. Особенно радует, что в крупных городах России, особенно в Москве и Санкт-Петербурге, начинается массовое внедрение беспроводных сетей Wi-Fi в публичных местах (так называемых Hot Spot) — отелях, аэропортах, ресторанах, торговых центрах и кафе.Что же такое Wi-Fi? Очередной мыльный пузырь IT-индустрии, который изо всех сил надувают производители и поставщики телекоммуникационного оборудования или новая технология, призванная в очередной раз изменить наш привычный мир, как это случилось когда-то с появлением Интернет и сотовой связи?

А К Щербаков , А. К. Щербаков

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов / Интернет / Компьютерное «железо» / Книги по IT
Аппаратные интерфейсы ПК
Аппаратные интерфейсы ПК

Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.

Михаил Юрьевич Гук

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов