Читаем Схемотехника аналоговых электронных устройств полностью

Гиратором называется электронное устройство, преобразующее полное сопротивление реактивных элементов. Обычно это преобразователь емкости в индуктивность, т.е. эквивалент индуктивности. Иногда гираторы называют синтезаторами индуктивностей. Широкое распространение гираторов в ИМС объясняется большими трудностями изготовления катушек индуктивностей с помощью твердотельной технологии. Использование гираторов позволяет получить относительно большую индуктивность с хорошими массогабаритными показателями.

На рисунке 7.20 приведена электрическая схема одного из вариантов гиратора, представляющего собой повторитель на ОУ, охваченный частотно-избирательной ПОС (Rос и C1).

Рисунок 7.20. Гиратор

Поскольку с увеличением частоты сигнала емкостное сопротивление конденсатора C1 уменьшается, то напряжение в точке a будет возрастать. Вместе с ним будет возрастать напряжение на выходе ОУ. Увеличенное напряжение с выхода по цепи ПОС поступает на неинвертирующий вход, что приводит к дальнейшему росту напряжения в точке a, причем тем интенсивнее, чем выше частота. Таким образом, напряжение в точке a ведет себя подобно напряжению на катушке индуктивности. Синтезированная индуктивность определяется по формуле [12]:

L = R1RосC1.

Добротность гиратора определяется как [12]:

Одной из основных проблем при создании гираторов является трудность в получении эквивалента индуктивности, у которой оба вывода не соединены с общей шиной. Такой гиратор выполняется, как минимум, на четырех ОУ. Другой проблемой является относительно узкий диапазон рабочих частот гиратора (до нескольких килогерц на ОУ широкого применения).

<p>7.3.3. Регуляторы тембра и эквалайзеры</p>

Для коррекции АЧХ в усилителях низких (звуковых) частот (УНЧ) применяют регуляторы тембра. В настоящее время наиболее часто применяют активные регуляторы тембра, не вносящие потери в нейтральном положении регулятора (равномерная передача во всей полосе рабочих частот). В качестве активных элементов чаще всего используют ОУ. Принципиальная схема симметричного активного регулятора тембра и его АЧХ приведены на рисунке 7.21.

Рисунок 7.21. Симметричный активный регулятор тембра

Нетрудно увидеть, что ОУ здесь охвачен цепями ООС, представляющими собой частотнозависимые делители напряжения нижних (R1, R2, R3, C1) и верхних (R4, R5, C2) частот. При диапазоне регулирования тембра не более ±20 дБ элементы схемы можно определить из соотношений [9]:

R1 = 0,11·R2 (кОм),

R3 = R1,

R4 = 0,33·R1,

R5≥3,7·R2,

где fн и fв — соответственно, нижняя и верхняя частоты регулирования.

Регулирование АЧХ УНЧ в нескольких отдельных участках частотного диапазона осуществляется с помощью эквалайзеров, которые преимущественно представляют собой активные регулируемые ПФ второго порядка. Пример построения эквалайзера с параллельными цепями ООС, представляющими собой ПФ с регулируемым затуханием и настроенные на частоты через октаву, начиная с fн, приведен на рисунке 7.22.

Рисунок 7.22. Десятиполосный эквалайзер

Более подробная информация по регуляторам тембра и эквалайзерам содержится в [9].

<p>7.4. Аналоговые перемножители сигналов</p>

Перемножение аналоговых сигналов, как и усиление, является одной из основных операций при обработке электрических сигналов. Для осуществления операции перемножения были разработаны специализированные ИМС - перемножители аналоговых сигналов (ПАС). ПАС должны обеспечивать точное перемножение в широком динамическом диапазоне входных сигналов и в возможно более широком частотном диапазоне. Если ПАС позволяют перемножать сигналы любых полярностей, то их называют четырехквадрантными, если один из сигналов может быть только одной полярности, двухквадрантными. Перемножители, умножающие однополярные сигналы, называются одноквадрантными. Известны разнообразные одно- и двухквадрантные ПАС на основе элементов с управляемым сопротивлением, переменной крутизной, использованием логарифматоров и антилогарифматоров. Например, регулятор с изменением режима работы элементов, изображенный на рисунке 7.7в, можно использовать в качестве перемножителя, если на дифференциальный вход подать напряжение ux, а вместо Eупр подать uy. Под воздействием uy меняется крутизна передаточной характеристики транзисторов, на базы которых подается второе перемножаемое напряжение ux. Можно показать, что выходное напряжение Uвых, снимаемое между коллекторами транзисторов ДК, при Rк1=Rк2=Rк определяется по формуле [13]

где   — коэффициент усиления по току БТ, включенного по схеме с ОБ; φT — температурный потенциал, φT=25,6 мВ.

Если ux<<φT, то выражение для Uвых можно упростить:

Недостатком рассмотренного простейшего перемножителя на одиночном ДК является весьма малый динамический диапазон входных сигналов, в котором обеспечивается приемлемая точность перемножения. Например, уже при ux=0,1φT погрешность перемножения достигает 10%.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки