Читаем Симфония № 6. Углерод и эволюция почти всего полностью

Второй шаг в происхождении жизни поднимает новые, совсем другие проблемы — не создание органических молекул, а их отсев. Добиологическая Земля создавала углеродсодержащие молекулы в ошеломляющем изобилии — сотни тысяч разных «малых» молекул: каждая — всего с несколькими атомами углерода, каждая — доступная в качестве потенциального биокирпичика. Жизнь же, несмотря на ее поразительное структурное разнообразие, использует химическую стратегию без излишеств. Бо́льшая часть клеток состоит всего из нескольких сотен отобранных молекул.

Для примера: из всего массива существующих аминокислот живые клетки для достижения большинства целей пользуются только двумя десятками. Более того, львиная доля этих 20 аминокислот встречается по крайней мере в двух зеркально симметричных версиях — в виде идентичных по своему составу левостороннего и правостороннего вариантов. Эксперименты в добиологической химии неизменно дают равное количество молекул-«левшей» и «правшей», но жизнь использует почти исключительно левосторонние аминокислоты. Тот же принцип бережливости относится к жизненно важным сахарам, практически все из которых — «правши», а также ко многим липидам и молекулярным компонентам ДНК и РНК. Следовательно, второй важный шаг на пути к происхождению жизни заключается в том, чтобы выбрать только нужное подмножество молекул и сконцентрировать их либо на поверхностях минералов, либо на прогреваемых солнцем окраинах высыхающих приливных бассейнов.

Поверхности — привлекательный вариант, которому мы с коллегами придавали особое значение. Бескрайние океаны древней Земли были слишком разбавленными для того, чтобы добиологическим молекулам удавалось регулярно встречаться и соединяться, но поверхности могли способствовать такому соединению. В некоторых случаях, как в классическом сценарии «нефть в воде», у молекул получалось концентрироваться на поверхности воды, таким образом формируя собственные отдельные слои и глобулы.

Хорошим примером являются мембраны, окружающие клетки. Они спонтанно собираются из множества длинных «тощих» липидных молекул с углеродным скелетом{161}. Один конец каждой молекулы сильно притягивается водой, другой конец вода отталкивает с той же силой. Если вы опустите много таких тонких молекул о двух концах в воду, силы притяжения и отталкивания быстро выстроят миллионы этих молекул в ряд, образующий гибкую двухслойную заполненную водой сферическую структуру. Водолюбивые концы выстроившихся молекул будут на внешних сторонах липидного бислоя, окружающего полую сферу, а концы-водоненавистники окажутся друг напротив друга глубоко внутри мембраны, как можно дальше от воды.

Эксперименты со смесями добиологических молекул подтверждали этот механизм образования мембран снова и снова. Липкие молекулярные смеси, оставшиеся на стенках аппарата Миллера — Юри, либо извлеченные из богатых углеродом метеоритов, либо полученные в ходе экспериментов по синтезу при высокой температуре, — все спонтанно образуют в воде крошечные подобные клеткам структуры. Эта часть загадки происхождения жизни — неизбежное возникновение самых примитивных клеточных мембран, — похоже, решена.

Но отбор и концентрация, стягивание в одном месте большинства молекул жизни — тех, которым свойственно растворяться в воде и которые не так легко самоорганизуются, — пока остаются под вопросом. Как древние аминокислоты нашли друг друга, чтобы создать первые белки? Как молекулярные кирпичики ДНК и РНК собрались в первые структуры, чтобы нести и копировать биологическую информацию? Чтобы решить эти загадки, многие из нас обратились к минеральному царству.

<p><strong>Минералы и происхождение жизни</strong></p>

Происхождение жизни зависело от стабильных поставок исходных материалов — химических кирпичиков и строительного раствора клеток. Для того чтобы появились клетки, нужные химические ингредиенты должны были просто встретиться и объединить силы, но эти шаги не могли произойти в слабом первичном бульоне без чьей-либо помощи.

К счастью, природа придумала несколько способов концентрации молекул жизни из разбавленного океана. Один очевидный механизм — когда океаническая вода расплескивается или поднимается в мелкий бассейн, где испаряется, таким образом концентрируя оставшиеся химические вещества в насыщенном органическом супе. Полтора столетия назад Чарльз Дарвин описал такой «теплый маленький пруд» в письме к своему другу, и уютная картинка благоприятного для зарождения жизни освещенного солнцем места закрепилась{162}.

Перейти на страницу:

Похожие книги

100 великих тайн Земли
100 великих тайн Земли

Какой была наша планета в далеком прошлом? Как появились современные материки? Как возникли разнообразные ландшафты Земли? Что скрывается в недрах планеты? Научимся ли мы когда-нибудь предсказывать стихийные бедствия? Узнаем ли точные сроки землетрясений, извержений вулканов, прихода цунами или падения метеоритов? Что нас ждет в глубинах Мирового океана? Что принесет его промышленное освоение? Что произойдет на Земле в ближайшие десятилетия, глобальное потепление или похолодание? К чему нам готовиться: к тому, что растает Арктика, или к тому, что в средних широтах воцарятся арктические холода? И виноват ли в происходящих изменениях климата человек? Как сказывается наша промышленная деятельность на облике планеты? Губим ли мы ее уникальные ландшафты или спасаем их? Велики ли запасы ее полезных ископаемых? Или скоро мы останемся без всего, беспечно растратив богатства, казавшиеся вечными?Вот лишь некоторые вопросы, на которые автор вместе с читателями пытается найти ответ. Но многие из этих проблем пока еще не решены наукой. А ведь от этих загадок зависит наша жизнь на Земле!

Александр Викторович Волков

Геология и география