Читаем Симфония № 6. Углерод и эволюция почти всего полностью

Исходя из основных форм плоских графеновых слоев, полых нанотрубок и замкнутых фуллеренов, легко представить себе более экзотические геометрические конструкции. Нанопочки выглядят как небольшие бугорки на нанотрубке или более крупном фуллерене. Нанотрубки способны состыковываться друг с другом под прямым углом, образуя наносоединения, или же могут выступать вертикально из графенового слоя подобно наностолбам. Бакиболы умеют заполнять нанотрубки как горошины — стручок, а вложенные друг в друга нанотрубки могут растягиваться или сжиматься наподобие ручки зонтика-автомата. Вы можете даже теоретически допустить существование изогнутых нанотрубок, образующих идеальный молекулярный тор — структуру в форме пончика.

Вооруженные таким набором форм, ученые и изобретатели мечтают о новом поколении молекулярных машин, имеющих наноразмерные рычаги, блоки, колеса и оси{135}. Благодаря нанотехнологии углерода моторы, электрические цепи и электронные компоненты атомарного уровня, которые требуются для следующего поколения имплантируемых медицинских устройств, микроконтейнеров для таргетной доставки лекарственных средств и компьютеров молекулярного масштаба, находятся, похоже, уже на расстоянии вытянутой руки.

<p><strong>СКЕРЦО, ДА КАПО — Истории</strong></p>

«Пластики!» — вот то «одно слово», которое прошептал безалаберному персонажу Дастина Хоффмана Бену мистер МакГуайр в фильме Майка Николса 1967 г. «Выпускник»{136}.

— Что конкретно вы имеете в виду? — спрашивает Бен.

— У пластиков великое будущее. Подумай об этом. Ты подумаешь об этом?

Эта незабываемо занятная и непонятная сцена содержит больше чем просто зерно истины. Пластики, или полимеры, изменили мир. Полимеризация — это химическая реакция, при которой многочисленные небольшие молекулы, или мономеры, соединяются в цепь или сеть, образуя макромолекулу — единую протяженную молекулу с тысячью атомов и почти всегда со скелетом из атомов углерода. Природные полимеры есть у всего живого: это, к примеру, древесина, волосы и шерсть, мышцы, паутина, кожа, листья, сухожилия — список можно продолжать. Учитывая повсеместность этих соединений в биологии, химики не спешили соревноваться с природой и в конечном счете пытаться ее улучшить.

Каучук, который впервые начали использовать в его природной форме еще в мезоамериканских культурах более 2000 лет назад, стал одним из первых полимеров, привлекших внимание химического сообщества{137}. Натуральный каучук получают из млечного сока каучукового дерева — необычного продукта, который, затвердевая, превращается в эластичный водонепроницаемый материал, способный принимать форму пластин, шаров и других полезных предметов. Но в своем необработанном состоянии, полученном прямо из рук природы, этот материал обладает множеством нежелательных свойств: натуральный каучук слишком липкий и слишком пахучий, он становится текучим, когда слишком жарко, и хрупким (трескается), когда слишком холодно. Причины всех этих свойств — как желательных, так и нежелательных — кроются в структуре каучукового полимера. Длинные прочные углеродные цепочки молекул каучука могут скользить друг по другу, обеспечивая и крепость, и гибкость, но только в узком диапазоне температур.

Современная индустрия полимеров, куда входит обширный и постоянно расширяющийся тип материалов, называемых пластиками, начала развиваться с изобретения в 1830-х гг. вулканизации — инновации, заявленной соперничающими американскими и британскими химиками. Вулканизация — это химический процесс, при котором сера или другое химическое вещество, добавленное к полимеру, устанавливает крепкие поперечные связи, своего рода молекулярные поперечные распорки. В результате получается гораздо более твердый и прочный материал (и менее пахучий вдобавок). Что касается резины, то процесс добавления серы к клейкому соку каучукового дерева и тепловой обработки смеси привел к получению значительно улучшенных продуктов, которыми мы пользуемся сегодня: это перчатки, галоши, ластики для карандашей, шланги, ленты-резинки, воздушные шарики, надувные лодки и, конечно, шины для любого транспортного средства на колесах. Еще ряд добавок обеспечивает гораздо более твердые варианты резины — для изготовления футбольных шлемов[35], колес скейтборда, шаров для боулинга и недорогих кларнетов.

Перейти на страницу:

Похожие книги

100 великих тайн Земли
100 великих тайн Земли

Какой была наша планета в далеком прошлом? Как появились современные материки? Как возникли разнообразные ландшафты Земли? Что скрывается в недрах планеты? Научимся ли мы когда-нибудь предсказывать стихийные бедствия? Узнаем ли точные сроки землетрясений, извержений вулканов, прихода цунами или падения метеоритов? Что нас ждет в глубинах Мирового океана? Что принесет его промышленное освоение? Что произойдет на Земле в ближайшие десятилетия, глобальное потепление или похолодание? К чему нам готовиться: к тому, что растает Арктика, или к тому, что в средних широтах воцарятся арктические холода? И виноват ли в происходящих изменениях климата человек? Как сказывается наша промышленная деятельность на облике планеты? Губим ли мы ее уникальные ландшафты или спасаем их? Велики ли запасы ее полезных ископаемых? Или скоро мы останемся без всего, беспечно растратив богатства, казавшиеся вечными?Вот лишь некоторые вопросы, на которые автор вместе с читателями пытается найти ответ. Но многие из этих проблем пока еще не решены наукой. А ведь от этих загадок зависит наша жизнь на Земле!

Александр Викторович Волков

Геология и география