Изотопы углерода, из которого состоят алмазы, также содержат указания на удаленные древние источники их атомов. Подавляющее большинство алмазов, возможно 90% проанализированных камней, имеют изотопный состав, типичный для мантийного углерода. Примечательно, что небольшая выборка относительно молодых алмазов (под «молодыми» я имею в виду те, возраст которых не превышает нескольких сотен миллионов лет) образовалась из легкого углерода, который не содержит тяжелый изотоп углерод-13{113}. Для любого образца, найденного вблизи поверхности Земли, такой признак будет считаться безошибочным свидетельством того, что эти атомы углерода по крайней мере единожды прошли через живые клетки. Но что насчет алмазов, обогащенных легкими изотопами? Они рассказывают ту же историю? Обитали ли когда-нибудь их атомы углерода в живых клетках, некогда погибших и захороненных, а затем погрузившихся в глубокие недра Земли и там преобразовавшихся в драгоценные камни? Вопрос все еще открыт, но «живой» источник углерода во многих алмазах не удивил бы тех из нас, кто начинает видеть отблески необыкновенного глубинного цикла углерода Земли.
Углерод в равновесии
Способ, которым жизнь изменяет глобальный углеродный цикл, по-прежнему в центре внимания. За миллиарды лет Земля, похоже, нашла баланс между тем углеродом, что погрузился глубоко в недра, и тем, что выделяется из вулканов, — это процессы, которые помогают стабилизировать климат и окружающую среду. Но насколько устойчиво это непрекращающееся циркулирование? Нет такого закона природы, который требовал бы, чтобы количество углерода, уходящего вниз, — запертого в горных породах, погребенного в осадочных отложениях и погрузившегося в процессе субдукции в мантию, — было бы точно равно тому количеству, которое возвращается на поверхность при вулканических извержениях или другими, более спокойными способами. Но нет и вопроса более насущного для Обсерватории глубинного углерода, чем этот баланс между тем, что уходит вниз, и тем, что возвращается обратно наверх.
Так в равновесии ли углеродный цикл Земли? Исследования Мари Эдмондс позволяют предположить, что многие зоны субдукции захоранивают большое количество своего углерода в глубоких недрах. Терри Планк же делает противоположный вывод — обособить углерод посредством субдукции чрезвычайно сложно, это скорее исключение, чем правило. И кто прав?
В 2015 г. двое из наиболее широко мыслящих руководителей DCO — Питер Келемен из Колумбийского университета и Крэг Мэннинг из Калифорнийского университета в Лос-Анджелесе — попытались свести все данные в одну изящную диаграмму глубинного углеродного цикла, своего рода музыкальную фразу глубин Земли, составленную с использованием хрестоматийных численных значений углеродного цикла{114}. Эта стильная диаграмма снабжена полудюжиной красных стрелок, каждая из которых представляет собой важнейшие потоки углерода между поверхностью и глубинами, каждая сопровождается одним или несколькими прямоугольничками с величинами этих углеродных потоков в мегатоннах углерода в год. Иллюстрация эта, которая сейчас используется на сотнях семинаров и лекций DCO, стала иконографическим изображением того, сколько нам еще нужно узнать об углероде Земли.
Среди этих стрелок или прямоугольничков нет таких, которые были бы определены точно и однозначно. Келемен и Мэннинг оценивают общий углерод, выделяемый из срединно-океанических хребтов и океанических островных вулканов в диапазоне от 8 до 42 Мт в год; поток из вулканов островных дуг — между 18 и 43 Мт в год. Минимальная оценка количества погруженного при субдукции углерода, который быстро возвращается в кору и воздух, составляет 14 Мт в год, максимальная — почти в пять раз больше. И самое отрезвляющее: подсчитанный результирующий поток углерода с поверхности Земли в глубокие недра варьирует где-то между поразительно высокими 52 Мт в год и практически нулем — ничем!
Мы видим признаки того, что баланс земного углерода может смещаться. За 4 млрд лет наша планета остыла, поэтому карбонатные минералы, которые, вероятно, однажды разрушились под действием близповерхностного тепла, сейчас могут переживать субдукционное погружение при более прохладных современных условиях. Жизнь также меняет это равенство, она продолжает осваивать новые трюки, изолируя углерод в черных сланцах, ракушечнике, угле и планктонном иле. Меняется климат, меняется химия океанов, соответственно, меняются механизмы и скорости движения углерода.
Это просто удачное стечение обстоятельств, что в течение большей части истории Земли общий углерод, уходящий глубоко вниз при субдукции, более или менее уравновешивался тем углеродом, что выходил на поверхность из вулканов и других источников. Следовательно, жизнь никогда не оставалась внакладе, когда ей требовалось найти достаточное количество углерода для толстых водорослевых матов и густых тропических лесов.
Лучших из лучших призывает Ладожский РљРЅСЏР·ь в свою дружину. Р
Владимира Алексеевна Кириллова , Дмитрий Сергеевич Ермаков , Игорь Михайлович Распопов , Ольга Григорьева , Эстрильда Михайловна Горелова , Юрий Павлович Плашевский
Фантастика / Проза / Историческая проза / Геология и география / Славянское фэнтези / Социально-психологическая фантастика / Фэнтези