Читаем Симфония № 6. Углерод и эволюция почти всего полностью

Многие лаборатории обычно определяют распространенность 12CH4 и 13CH4, которые различаются по массе примерно на 6%. Это относительно легкое лабораторное исследование. Но, когда мы в 2008 г. основали Обсерваторию глубинного углерода, еще не было методов измерения крошечного количества 12CH2D2 или 13CH3D в образце; это представляло огромную техническую проблему, поскольку две редкие разновидности метана отличаются друг от друга по массе менее чем на 0,01%. Никакой существующий на тот момент инструмент не обладал достаточной чувствительностью для проведения подобных измерений, так что еще в самом начале программы мы решили создать новый прибор.

Руководство взял на себя Эдвард Янг из Калифорнийского университета в Лос-Анджелесе, а работал он с инженерами британской компании Nu Instruments из Рексема в Северном Уэльсе{98}. Разработчики использовали традиционный подход на базе масс-спектрометрии, которая основана на разделении разных видов молекул метана с помощью магнитов. Метод заключается в том, чтобы ионизировать метан — поместить электрический заряд на каждую молекулу для ее ускорения в электрическом поле, а затем изменить траектории этих ускорившихся молекул с помощью мощного магнита. Более тяжелые молекулы метана перемещаются медленнее и отклоняются слабее, нежели их менее массивные компаньоны.

Янг с коллегами довели эту технологию разделения по массе до предела возможностей. Чтобы достичь требуемых разделения и чувствительности, они разместили пару больших изогнутых металлических пластин и трехтонный магнит в тандеме, породив этим чертовски сложную проблему для ионной оптики. Магниты, электромагнитные линзы и фильтры нужно было выстроить таким образом, чтобы ионизированные молекулы 12CH2D2 и 13CH3D пролетели через вакуум по изогнутой траектории и поразили различные цели. Получившаяся в итоге машина размером с комнату, названная «Панорама», оказалась очень рискованным предприятием, стоившим Эду Янгу и его коллегам нескольких лет работы и более 2 млн долларов. Но это сработало{99}.

Шестого ноября 2014 г. ученые DCO провели в уэльском центре разработки первый успешный эксперимент, в котором одновременно определили молекулы 12CH2D2 и 13CH3D. «Панорама» прекрасно выделила два крошечных изотопных пика из образца промышленного уэльского угольного газа. Вскоре прибор перевезли в Калифорнию; первые исследования природных образцов и первые публикации появились в 2015 г. Некоторые из нас немного нервничали по поводу больших вложений, но Эд Янг оставался невозмутимым. «Я знал, что это сработает», — вспоминает он. Эд относится к «Панораме» философски: «Люди любят говорить, что хорошая наука не должна зависеть от приборов, но время от времени прорывы в инструментарии продвигают нас вперед в нашей науке. Я думаю, разработка этого инструмента как раз такой случай».

<p><strong>Лазеры</strong></p>

Несмотря на то что DCO поддерживала разработку «Панорамы», мы подстраховались. Сюхей Оно, только что назначенный ассистент-профессором в Массачусетском технологическом институте и специалист по работе на традиционных масс-спектрометрах, в течение нескольких лет пытался разработать радикально новый вид измеряющей изотопы техники, основанный на лазерной спектроскопии{100}.

Сюхей научился объяснять принцип квантово-каскадной лазерной спектроскопии лаконично, всего в нескольких элегантных слайдах в PowerPoint. Молекулы газа вроде метана поглощают узкополосный свет сотен различных длин волн. Это является следствием точно настроенных колебаний электронов. На определенных гармонических частотах будут резонировать как струны скрипки, так и электроны атомов. Эти длины волн чрезвычайно чувствительны к изотопному составу молекулы. Замените 13C на 12C или D на H, и резонансы сильно изменятся.

Используя мощный настраиваемый лазер, Оно полагал, что сможет вычислить отношение нормального метана к 13CH3D. Если бы ему удалось измерить интенсивность поглощенного света достаточно чувствительным спектрометром, который разделял бы характеристические длины волн разных видов метана, то у нас появилась бы альтернатива в выборе инструментария. Более того, лазерная установка гораздо дешевле и ее можно в конечном счете уменьшить до сравнительно портативной версии, возможно даже такой, которая могла бы слетать когда-нибудь на Марс.

На бумаге идея была отличной, но разработка новых приборов требует денег, а традиционные спонсирующие организации как-то неохотно инвестировали в неопробованное спектроскопическое устройство. В 2012 г. DCO выделила Сюхею скромный грант в 100 000 долларов. Этого было недостаточно, чтобы создать новый инструмент, но оказалось достаточным стимулом, чтобы привлечь других людей. За год Сюхей создал свой прибор и получил первые результаты.

Перейти на страницу:

Похожие книги

100 великих тайн Земли
100 великих тайн Земли

Какой была наша планета в далеком прошлом? Как появились современные материки? Как возникли разнообразные ландшафты Земли? Что скрывается в недрах планеты? Научимся ли мы когда-нибудь предсказывать стихийные бедствия? Узнаем ли точные сроки землетрясений, извержений вулканов, прихода цунами или падения метеоритов? Что нас ждет в глубинах Мирового океана? Что принесет его промышленное освоение? Что произойдет на Земле в ближайшие десятилетия, глобальное потепление или похолодание? К чему нам готовиться: к тому, что растает Арктика, или к тому, что в средних широтах воцарятся арктические холода? И виноват ли в происходящих изменениях климата человек? Как сказывается наша промышленная деятельность на облике планеты? Губим ли мы ее уникальные ландшафты или спасаем их? Велики ли запасы ее полезных ископаемых? Или скоро мы останемся без всего, беспечно растратив богатства, казавшиеся вечными?Вот лишь некоторые вопросы, на которые автор вместе с читателями пытается найти ответ. Но многие из этих проблем пока еще не решены наукой. А ведь от этих загадок зависит наша жизнь на Земле!

Александр Викторович Волков

Геология и география