Профили температуры и давления Земли связаны: чем глубже вы погружаетесь, тем горячее становится. В некоторые горячие точки вроде гидротермальных зон Йеллоустона или Исландии нужно опуститься всего на несколько метров, чтобы достичь температурного предела жизни. Но в более прохладных континентальных зонах, вдали от какой-либо вулканической активности, температура повышается менее чем на 7 °C с каждым километром земной коры. Следовательно, вполне можно допустить, что некоторые микробы живут более чем в 16 км под поверхностью, хотя отобрать каменный образец на такой глубине пока не позволяет ни одна из самых современных технологий бурения.
Третий стоящий перед глубинной микробной жизнью вызов заключается в том, чтобы найти надежный источник энергии. Многие глубинные микробы «приурочены» к мельчайшим карманам воды, порой изолированным в течение миллионов лет. Любая химическая энергия в минеральных зернах, выстилающих эти наполненные жидкостью полости, давно израсходовалась, но свежие исследования обнаружили другой, довольно неожиданный источник энергии — радиоактивность. В каждой горной породе есть следовые количества радиоактивного урана — возможно, один атом на миллион. Уран в природе распадается чрезвычайно медленно: его период полураспада (с испусканием разрушительных альфа-частиц) равен примерно 4,5 млрд лет. Но горные породы в целом содержат так много его атомов, что медленный и постоянный поток альфа-частиц буквально пропитывает подповерхностную область. Когда альфа-частица «плюхается» в воду, она может разделить H2O на водород и кислород — отличную еду для микробов. Это не очень солидный источник энергии, но, видимо, его достаточно, чтобы поддерживать некоторые крошечные микробные сообщества в течение целых геологических эонов.
Как минералога меня привлекает идея, что история жизни неизбежно связана с минеральным царством. Горные породы и минералы действительно могли служить энергетической отправной точкой для жизни, но есть еще один привлекательный — и даже более многообещающий и надежный — энергетический источник. Вот потому-то жизнь и научилась жить за счет света Солнца.
Вариация 2. Для получения энергии жизнь учится использовать солнечный свет{180}
В течение как минимум миллиарда лет примитивная, связанная с водой микробная жизнь Земли — включая как те клетки, что живут на поверхности, так и те, что находятся глубже, — играла незначительную роль в циркулировании углерода. Общая биомасса Земли была скудна, она ограничивалась маленькими редкими микробными пленками, распространение которых обусловливалось в основном химической энергией свежих вулканических пород, контактирующих с водами океанов. Такое положение должно было измениться, когда жизнь поняла, как использовать гораздо более мощный источник энергии — свет Солнца.
Фотосинтез — потрясающая биологическая инновация. По своей сути фотосинтез, который мы знаем сегодня, с готовностью берет доступные составляющие — простые молекулы воды и углекислого газа плюс энергию солнечного света — и производит целый ряд молекулярных продуктов, необходимых для жизни (вместе с жизненно важным газом кислородом). Этот процесс представлял собой фундаментально новый и эффективный способ циркулирования углерода (сложные детали рассматривать не будем).
В основе фотосинтеза лежит фортуна: нам попросту повезло, что идущие от Солнца волны света, или фотоны, способны нести энергию. Чем короче длина волны, тем больше энергия. Мало того, эта энергия может быть передана атомам в процессе поглощения. Но, как и в истории Златовласки с тремя мисками каши, существует энергическая золотая середина, когда не слишком жарко и не слишком холодно. Для инициирования в биологии необходимой химической реакции нужно, чтобы поглотилось только требуемое для перемещения электронов между атомами количество энергии.
Атомы легко поглощают инфракрасные фотоны с длинами волн больше (и, таким образом, с меньшей энергией), чем у видимого света. Инфракрасные волны заставляют атомы колебаться немного быстрее — мы ощущаем это как тепловую энергию. Когда вы чувствуете тепло Солнца или пылающего костра, ваша кожа поглощает инфракрасное излучение, ее молекулы нагреваются. Воздействие усиливается, если объект черный, что вы, безусловно, испытывали на себе, гуляя босиком по битумному покрытию солнечным летним днем. Однако только самые энергичные из инфракрасных фотонов — с длиной волны, близкой к той, которую мы видим, как красный свет, — обладают достаточной энергией, чтобы перемещать электроны между атомами и таким образом запускать биологические реакции{181}.
Лучших из лучших призывает Ладожский РљРЅСЏР·ь в свою дружину. Р
Владимира Алексеевна Кириллова , Дмитрий Сергеевич Ермаков , Игорь Михайлович Распопов , Ольга Григорьева , Эстрильда Михайловна Горелова , Юрий Павлович Плашевский
Фантастика / Проза / Историческая проза / Геология и география / Славянское фэнтези / Социально-психологическая фантастика / Фэнтези