Читаем Силурийская гипотеза полностью

Есть множество причин значительного увеличения сноса осадка реками, и, соответственно, его отложения в прибрежных природных средах. Появление сельского хозяйства и связанного с ним сведения лесов привело к значительному усилению эрозии почв (Goudie, 2000; National Research Council, 2010). Кроме того, шлюзование рек (таких, как Миссиссипи) привело к значительно большему отложению океанских осадков, чем могло бы наблюдаться в ином случае. Данную тенденцию несколько ослабляет параллельное увеличение количества речных плотин, которые снижают объёмы осадка, сносимого вниз по течению. В дополнение к этому повышение температуры и увеличение содержания водяного пара в атмосфере стали причиной большей интенсивности осадков (Kunkel et al., 2013), что само по себе также привело бы к большей эрозии, по крайней мере, в отдельных регионах. Эрозия берегов также возрастает как следствие повышения уровня моря, а в полярных областях она усиливается за счёт уменьшения количества морского льда и таяния вечной мерзлоты (Overeem et al., 2011).

В дополнение к изменениям в потоке осадочных отложений с суши в океан изменится также сам состав осадка. Из-за повышенного растворения CO2 в океане вследствие антропогенного выброса CO2 верхний слой океана закисляется (увеличение содержания H+ на 26 % или снижение pH на 0,1 с 19-го века) (Orr et al., 2005). Это приведёт к усилению процесса растворения CaCO3 в составе осадка, которое будет продолжаться, пока океан не сможет нейтрализовать это увеличение. Произойдут также существенные изменения в минералогии (Zalasiewicz et al., 2013; Hazen et al., 2017). Усиление выветривания на континентах также, вероятно, изменит соотношения стронция и осмия (то есть, соотношения 87Sr/86Sr и 187Os/188Os) (Jenkyns, 2010).

Как уже обсуждалось выше, содержание азота в реках увеличивается как следствие методов ведения сельского хозяйства. Это, в свою очередь, приводит к усилению деятельности микробов в прибрежной зоне океана, которая может исчерпать растворённый в толще воды кислород (Diaz & Rosenberg, 2008), а недавние обзоры указывают на снижение его содержания по всему миру уже примерно на 2 % (Ito et al., 2017; Schmidtko et al., 2017). Это, в свою очередь, приводит к расширению зон с минимальным содержанием кислорода, большему масштабу аноксии в океане и возникновению так называемых «мёртвых зон» (Breitburg et al., 2018). Поэтому для осадка в пределах этих областей будут характерны большее содержание органики и меньшая интенсивность биотурбации (Tyrrell, 2011). Окончательная степень распространения этих мёртвых зон неизвестна.

Кроме того, объёмы антропогенных потоков свинца, хрома, сурьмы, рения, металлов платиновой группы, редкоземельных элементов и золота в настоящее время значительно превышают их поступление из естественных источников (Sen & Peucker-Ehrenbrink, 2012; Gałuszka et al., 2013); это подразумевает, что будет наблюдаться резкий пик в потоке этих металлов в составе речного стока и, следовательно, их более высокая концентрация в прибрежных отложениях.

<p>Фаунистическая радиация и вымирания</p>

Последние несколько веков стали временем существенных изменений численности и распространения мелких животных, в частности, крыс, мышей и кошек, и т. д., что связано с исследованием человеком Земли и биотическим обменом. В настоящее время изолированные популяции почти везде во многих отношениях замещены этими чужеродными видами. Летопись окаменелостей, вероятно, отразит большую фаунистическую радиацию этих индикаторных видов в данной точке. В то же самое время много других видов уже вымерло или с большой вероятностью вымрет, и их исчезновение из летописи окаменелостей будет заметным. По прошествии многих миллионов лет в будущем вымирания крупных млекопитающих, которые произошли в конце последнего ледникового периода, также будут связаны с началом антропоцена.

Рис. 1. Схематические кривые стабильных изотопов углерода и температуры (или связанных параметров) на протяжении трёх периодов.

Перейти на страницу:

Похожие книги