I reasoned that an "active-negative" component must be operative in the
salamander's intelligence. What Triclops
***
I also concluded that one-to-one is a valid principle and becomes useful providing we understand its epistemological nature. Like the active-negative mode, one-to-one is not simple arithmetic, but algebraic in character. And one-to-one is not an a priori principle of sensation-perception-learning. It is a by-product of intelligence. The mind imposes one-to-one, not the other way around. It is an effect not a cause, a consequence, not an antecedent.
I spent the next few days translating the main argument into scientese, drafted
a manuscript and give it to Carl. He corrected my spelling, made a few minor
changes and we shipped it off to
***
What did Triclops's two normal eyes do for him? I ponder the question, even today. But it was several years before even a clue surfaced. The main obstacle was the test itself, which, after Triclops and Cyclops, looked to me like the sure route to dysinformation. But then I found a vision-dependent response that reopened the whole issue. As with the Looking-up reaction, the discovery was an outcome of making do.
I had some students working in the lab and we happened to have a larger number of larvae than of glass finger bowls. As a substitute, I bought polystyrene Dixie cups, which were inert and, by the gross, cost less than a half cent a piece. (I still owe my wife for them.) The cups were a brilliant bride's white. Against this background, the normal animals blanched to a very bright coloration, which they maintained, I found, even when the illumination was drastically curtailed (to moonlight levels). Transferred to a black pan, the normal animals darken until you can hardly find them; in clear cups or bowls, they assume a tawny color. In marked contrast, eyeless animals when illuminated assumed dark coloration in recepticles of any color, including the white cups.
Over the years, I'd become vaguely aware of the larva's ability to alter skin coloration, and I knew there was a literature on what is their camouflage reactions (the technical term is metachrosis) out in the wilds. It isn't anything like the chameleon, not dramatic or quick, and is not rwith the animals in clear crystal. But in the white cups, the reactions were conspicuous and they caught my immediate attention.
After reading all I could find in the scientific literature and conducting some preliminary experimentation to convince myself that normal camouflage reactions are visually elicited, I decided to look use test Cyclops for the reaction.[11]
I had to have some way of judging when the grafted eyes were functional and, I realized, and therefore set up a group of controls called Orthoclops.
Ortho means the same. In the Orthoclops, I removed and immediately replaced the natural eye. It took about a month for the Orthoclops to recovery the full range of camouflage reactions.
Cyclops? My expectation was that, soon after the Orthoclopes showed me a viable camouflage reaction, the Cyclopes would too. That didn't happen. Cyclops darkened in white cups.
Now if all the Cyclopes had simply acted like a typical eyeless animals, I might have been a little embarrassed, but I would have ruled the top-mounted eye incapable of carrying visually meaningful sense data and have written an article critical of our previous observations. And that would have been that.
But Cyclops didn't fully darken like eyeless--not all of them, anyway. And many in the Cyclops group responded positively to vision function tests. I even shipped some off to Carl for light-shock testing. The Cyclops not only saw but the comparative scores were identical to what we'd observed years before. I had no choice but to keep on going with the camouflage reaction.