Today there are entire libraries, whole university departments, and specialized learned societies devoted exclusively to storing, disseminating, and promoting the wisdom of the "neurosciences." So vast is knowledge about the nervous system that the study of human neuroanatomy alone requires a completely separate course. Facts abound on the brain's chemical composition, anatomical organization, and electrophysiological activities. The main routes for incoming sensory messages, for example, have been plotted and replotted--the signals enabling us to see a sunrise, hear a sparrow, smell a rose, taste a drop of honey, feel the sting of a wasp, appreciate the texture of another human hand. The images of these words, for instance, land on the retinas of the reader's eyes and trigger well-worked-out photochemical reactions, which, in turn, detonate electrical signals within the receptor cells--the rods and cones. The retina itself begins sorting, integrating, and encoding the signals into messages, which it transmits through highly specific routes via the optic nerves and optic tracts to relays in the core of the brain. From the relays, the message moves to specific cells in what are called the occipital lobes of the cerebrum, and there establishes point-for-point communication between loci out in the visual fields, and particular input stations in the brain.
Much is known, too, of outflow pathways used in carrying direct orders to the effectors of our overt behavior--the muscles and glands that let us walk, talk, laugh, blush, cry, sweat, or give milk. In spite of admittedly vast gaps among the facts, enough is known today to fill in many of the blanks with plausible hypotheses about circuits used in language, emotions, arousal, and sleep--hypotheses for many of our actions and even a few of our feelings and thoughts. Damage to a known pathway yields reasonably predictable changes or deficits in behavior, perception, or cognition. Neurological diagnoses would be impossible, otherwise. For example, a person with partial blindness involving the upper, outer sector of the visual field, with accompanying hallucinations about odors and with a history of sudden outbursts of violence, quite likely has a diseased temporal lobe of the cerebrum --- the forward part of the temporal lobe on the side opposite the blindness, in fact. Or a person who suffers a stroke, cannot speak but understands language, and is paralyzed on the right side of the body almost assuredly has suffered damage at the rear of the cerebrum's frontal lobe--the of the left frontal lobe, to be precise.
For a quick pictorial neuroanatomy lesson, go here.
Up to a point, in other words, the brain fits neatly and simply into the anatomical scheme of things. But throughout history, the battle-ax, shrapnel, tumors, infections, even the deliberate stroke of the surgeon's knife, have paralyzed, blinded, deafened, muted, and numbed human beings, via the brain, without necessarily destroying cognition, erasing memory, or fractionating the mind. It wasn't that anatomists couldn't link specific functions to particular parts of the brain. Far from it. But when we reached for the dénouement, for an explanation of the most pivotal features of the brain, the structural argument teetered under the weight of contradictory evidence.
***
Consider a paradox about vision known as