The movement within a pregnant woman's uterus can't be equated to the simple
push-pull action-reaction of a hydraulic shock absorber. It is behavior. Just
as the embryo's lungs, heart, eyes, face and a brain gradually develop through
fishlike, froglike and ratlike stages into what we might be willing to call a
"baby," so the primitive mind we start out with must gradually and
Yet in spite of an unbroken thread running all the way back through our development, we emerge from the uterus infinitely different creatures from when we first implanted into its soft, warm, sticky inner wall. How do we become so different during development? The independence principle, remember, permits new codes to be added virtually at will to the pre-existing deck. Buster serves as a precedent for such additions.
The independence principle also frees us from having to assume fundamentally different laws of Nature in order to explain how experience can add to our mental stores what development builds into us spontaneously. In hologramic theory, one general principle serves all the codes, whether we call them memories or instincts, learned ideas or innate thoughts, a priori or a posteriori knowledge. An examination of this prediction of the theory was the next phase of my research.
***
I lost my job at the beginning of 1970, before shufflebrain was a complete
story. A miniature depression had begun in the sciences during 1969. Shortly
after I was fired, a staff writer for
But by the autumn of 1970, I was drawing real wages again. I had a splendid office overlooking the most beautiful campus I had ever seen. Although my lab had nothing in it, my morale was high. I had applied to the university's grant committee for a few thousand dollars to tide me over until I could secure federal funds. When I got four hundred dollars instead, I was still too euphoric to bitch. And I set about doing what scientists of the generation before mine had routinely done: made do!
Making do included scrounging salamanders from a wonderful man, the late Rufus Humphrey. Humphrey had retired to Indiana University from the anatomy department of the University of Buffalo (now the State University of New York at Buffalo). As chance had it, I'd joined that department, myself, for a period in the early 1960's. After taking over some discarded dissecting tables Humphrey had once used for his salamanders (Humphrey was a maker-do of world class rank), I'd written him to tell him that his picture still hung in the microscopic anatomy lab at Buffalo. Thus began a lasting friendly correspondence between us.
Humphrey studied the genetics of a salamander known as the axolotl. Some of his purebred strains ran back to 1930. His colony (which continues today as the Axolotl Colony at Indiana University) is famous, worldwide, among people who work with amphibians. Even if I had not been on a scrounging mission, one of the first things I would have had to see in Indiana was Humphrey's axolotls.