Читаем Шипение снарядов полностью

Ясно, что если температура ВВ повышена, то и для создания очага реакции необходимо меньше горячих точек — чувствительность ВВ возрастет. Ну а если понизить температуру ВВ? В 70-х годах был разработан метод разминирования, предусматривавший охлаждение взрывоопасного предмета жидким азотом. Охлажденное устройство можно было «разобрать», постукивая по нему молотком (при таких температурах и металлы очень хрупки).

А при нормальной температуре — можно ли понизить чувствительность ВВ? Для этого надо удалить воздушные включения — области концентрации горячих точек. После прессования, под большим давлением и при высокой температуре, в присутствии небольшого количества растворителя, мощная взрывчатка (гексоген) приобретает плотность, близкую к плотности монокристалла, и становится полупрозрачной. Коллега автора выточил из «агатированного» ВВ пепельницу и любил гасить в ней окурки, сообщая посетителям, из чего пепельница сделана и наслаждаясь произведенным впечатлением. Автор отнесся к хвастовству «гусара» неодобрительно.

…Кроме детонации с постоянной скоростью, возможны и нестационарные режимы. Сходящиеся детонационные волны (цилиндрические, сферические) ускоряются по мере уменьшения радиуса. На достаточно малых радиусах энергия химической реакции вообще перестает играть существенную роль, и возрастание параметров сжатия определяется только геометрическим фактором. Кстати, именно в сферически-симметричном случае возможно достижение экстремальных состояний вещества, хотя часто от даже имеющих дипломы технических вузов приходится слышать, что для получения наибольшего давления следует организовать «лобовое» столкновение тел. Видимо, тут сказывается юношеский опыт игры в футбол, при которой лобовые столкновения происходят часто, а сферически-симметричные — никогда.

Исторически сложилось так, что термин «волны» используется для обозначения многих явлений, в природе которых общего мало (рис. 1.15). Движение вещества при взрывных процессах подчиняется уравнениям гидродинамики, названию которых тоже не всегда соответствует область их применения: ими описываются не только движения жидкости (откуда и «гидро»), они используются для решения очень многих задач. Возможно, одной из причин внедрения «волновой» лексики послужило то, что, например, процессы отражения УВ имеют сходство с волновыми. Натолкнувшись на твердую преграду, УВ может «отразиться» либо приобретя дополнительное сжатие (рис. 1.16), либо испытав разрежение вещества (вроде как с «потерей фазы»).

Рис. 1.15Движения вещества в морских и ударных волнах различны. Если выделить небольшую массу воды вблизи поверхности чудно окрашенного тихоокеанским закатом моря, то окажется, что в волне прибоя ее траектория напоминает эллипс или окружность, а плотность не меняется. В ударной волне вещество движется только в направлении распространения волны, вначале увеличивая свою плотность, а затем (если волну не поджимает какой-либо поршень) устремляется в обратном направлении, снижая при этом плотность (в так называемой фазе разрежения или разгрузки). В других главах книги речь пойдет о волнах электромагнитных, совсем уж на морские не похожих — распространяющихся со скоростью света колебаниях напряженности электрического и магнитного полей

Критерием того, по какому сценарию это произойдет, является ударно-волновой импеданс — произведение плотности вещества на скорость звука в нем. Если преимущество в ударно-волновом импедансе за веществом преграды, отражается дополнительно «поджатая» волна, от преграды с меньшим импедансом — разреженная, но в любом случае веществу преграды будет передан импульс и оно начнет двигаться по направлению распространения УВ.

Рис. 1.16
Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука