Читаем Шипение снарядов полностью

… Вернемся к аналогии с карандашами и сделаем промежутки между ними совсем незаметными. Тогда стоит чуть-чуть тронуть их ряд — и фронт «процесса» окажется очень далеко, а «движение вещества» будет несущественным. Если сжимаемость мала, а ионизация все же происходит, то магнитное поле сразу оказывается в проводящем веществе, которое «не успеет» сколь-нибудь заметно вытеснить поле в область сжатия — произойдет «вмораживание» (рис. 4.27). Предельный случай вмораживания — ионизация вещества мощным излучением, когда среда может вообще не двигаться. Не сможет двигаться и поле, оказавшееся в такой среде после ионизации. Потери на вмораживание специфичны именно для ударного сжатия, они «откусывают» поле по краям области сжатия, «уводят» из него магнитный поток, в противоположность лайнеру, который «толкает перед собой» поле, сохраняя поток (за исключением того, что диффундирует внутрь него).

Подытожим причины, по которым применение ударной волны целесообразно для очень быстрого и очень «глубокого» сжатия магнитного поля.

• По обе стороны фронта ударной волны разница плотностей мала: даже ударные волны с давлением в миллион атмосфер сжимают твердые тела примерно вдвое, а дальнейшее повышение давления сопровождается ростом не плотности, а температуры. Малая разность плотностей означает, что при ударно-волновом сжатии не развиваются нестабильности.

• При ударно-волновом нагревании возможны ионизация и скачок проводимости: перед фронтом вещество является изолятором, в котором магнитное поле распространяется со световой скоростью, а за фронтом — проводником, в котором скорость распространения поля на много порядков ниже. Такой волной, образующей замкнутое кольцо, сходящееся к центру, может сжиматься магнитное поле — как лайнером, но без нестабильностей, и к тому же быстрее, чем лайнером, потому что скорость фронта всегда превышает массовую скорость.

• Как вмораживание, так и диффузия, приводят к потерям магнитного поля: оно «захватывается» проводящим веществом и уже далеко не полностью концентрируется в области сжатия. Становится возможным «сбрасывать» излишнее поле за фронт ударной волны, препятствуя тем самым чересчур быстрому усилению магнитного давления. Выбирая характеристики вещества (степень сжатия и проводимость в ударно-сжатом состоянии) можно регулировать «сброс» поля, согласуя тем самым закон возрастания его давления в области сжатия с давлением в веществе ударной волны, устраняя препятствие для достижения сколь угодно малого радиуса. Будем, однако, помнить, что работа против сил магнитного поля (а значит, и повышение энергии поля) совершается за счет кинетической энергии вещества, так что необходим компромисс. Если ударное сжатие будет слишком мало (очень малы промежутки между карандашами), то все магнитное поле будет вморожено, а существенного движения массы вещества не будет, а значит, не хватит и энергии в момент, когда она особенно нужна — на конечной стадии сжатия. Если же сжатие будет слишком велико, случится то, что случается в ИВМЕ — магнитное давление остановит компрессию поля, потому что быстро станет «сильнее» гидродинамического давления.

Рис. 4.27Иллюстрация «вмораживания» магнитного поля в проводящую среду при помощи знакомой читателю «карандашной» аналогии. Силовые линии поля моделируются обрезками стальной проволоки. Сдвинувшись, карандаши зажмут («вморозят») обрезки между собой, и двигаться дальше им можно будет только вместе. Некорректность аналогии в том, что проволока и в несжатом веществе не совсем свободна (может двигаться только в пределах зазоров между карандашами), в то время как магнитное поле в диэлектрике — в любом направлении со скоростью света

…Непрост в экспериментальной физике переход от научной болтовни к практическим решениям. Вы знаете, что «стрелять» до бесконечности вам не позволят: и время, и финансирование ограничены всегда. Не верьте лжи, что перед опытом все было рассчитано: для устройства, созданного впервые, слишком многие параметры, необходимые для расчетов, сомнительны. Поэтому после арифметических вычислений (в крайнем случае — после решения простейшего дифференциального уравнения) от вас требуется твердо произнести что-либо вроде: «Рабочее тело в источнике излучения будем делать из монокристалла иодида цезия!». Основания для такого решения были следующими.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука