… Опыт готовят долго, но вот датчики и кабели подсоединены, и всех загнали в бункер. Кнопка нажата; на взрыв не смотрят, это опасно. Видна отраженная от стен вспышка. Через доли секунды воздух на мгновение становится тугим и бьет по ушам. Близкая детонация разгоняет соломинку так, что она втыкается в сталь. На дистанции около метра от взрыва поток газов до песчинки счищает почву с корня дерева (иногда этим пользуются, оставляя вблизи заряда «сувениры»; при инструктаже невредно напомнить, что так же чисто могут быть «обдуты» и мышцы с кисти руки). Наконец, гром взрыва умирает, сделав слышным тихий шелест летящих осколков — остатков того, что еще несколькими мгновениями ранее было генератором, собранным вашими руками. Первый взгляд — на осциллографы: есть ли сигналы от датчиков тока.
Осциллограф — главнейший в экспериментальной физике прибор. Тонкий луч непрерывно эмитируемых в его трубке электронов вызывает свечение в той точке экрана, на которую он падает. По горизонтали отклоняет этот луч одна пара пластин, на которую подается возрастающее во времени напряжение, и пробегает он равномерно сантиметры экрана, только не за годы, а за микросекунды. А на вертикальную пару пластин подается напряжение исследуемого сигнала. Нет сигнала — и ровную линию прочертит осциллограф. Есть сигнал — и получи́те осциллограмму — объективное свидетельство развития во времени процесса, который вы исследуете. И если все подключено правильно, не сомневайтесь: осциллограмма — не партийная программа (хорошо сформулировал, в рифму!).
Вот и подал автор на вход осциллографа сигнал с пробной катушки, размещенной на оси устройства. В опыте, при сжатии лайнера в полтора раза (от 45 мм до 30 мм) магнитный поток уменьшился всего на 9 % от того, который был создан разрядом конденсатора.
От этого ИВМГ требовалась высокая скорость схождения лайнера, а потому катушка, из которой он образовался, была намотана алюминиевыми, а не медными проводками: ради скорости метания проводимость была принесена в жертву. Сохранение потока и так было достаточным, поскольку представляла интерес ранняя стадия сжатия, на которой еще не слишком развиты нестабильности на внутренней поверхности лайнера.
Каждый видел, по крайней мере — по телевидению, «кусты» разрывов — это и есть нестабильности. Весьма наглядна и фотографии 2.6, 2.9: слой песка, метаемый взрывом бомбы, вырождается в струи, летящие в воздухе.
Нестабильности развиваются при большой разнице в плотности движущегося вещества и среды, где происходит его движение. Именно такое соотношение и имеет место в ИВМГ: лайнер из металла движется в воздухе. На кадрах высокоскоростной съемки (рис. 4.11) видно, как на внутренней поверхности лайнера начинают расти «пальцы», а потом образуется «звезда», разрезающая объем сжатия, на чем процесс усиления поля и заканчивается. В опытах автора (о них речь впереди) лайнер выполнял две функции, причем главной являлось формирование ударной волны при ударе лайнера о цилиндрическое тело. Ударной волне тоже следовало быть цилиндрической, а, значит, в лайнере — недопустимы значительных размеров нестабильности. «Поджатие» же поля было приятным, но не решающим обстоятельством.
Привыкшие достигать совершенства, специалисты ВНИИЭФ добились того, что в кинетическую энергию лайнера передавалось до 30 % химической энергии ВВ (теоретически возможный уровень — 32 %). Но химическая энергия распределена по большому объему заряда ВВ, а кинетическая энергия лайнера в конце процесса кумулируется в полости небольших размеров, что и позволило достигнуть рекордного значения плотности энергии магнитного поля (4·107 Дж/см3), на несколько порядков превышающего плотность химической энергии в бризантных ВВ.