Читаем Шелест гранаты полностью

В опытах (рис. 5.19) одновитковый соленоид из меди 1 окружал кольцо 2. Оба погружались в жидкий азот 3, где кольцо и обретало сверхпроводимость. От арзамасского ВМГ снабженного узлом разрыва, в соленоиде 1 формировался импульс тока с коротким (в сотню наносекунд) фронтом. Индуктивность соленоида вначале мала, потому что внутри него находилась сверхпроводящая вставка, поэтому возрастание тока определяется только возможностями формирователя. Магнитное поле сосредотачивалось в узком зазоре между сверхпроводником и соленоидом: в сверхпроводник оно не могло проникнуть, потому что там индуцировался ток, полностью его компенсировавший, а в соленоид из меди хоть и проникало, но — медленно. Когда же ток в сверхпроводнике превышал критическое значение, возникал фазовый переход, по одну сторон которого пленка была еще сверхпроводящей, а по другую — проводила плохо. Фронт перехода двигался от периферии кольца к его оси и оказалось, что скорость его довольно велика (десяток километров в секунду или — сантиметр в микросекунду), но слабо зависит от индукции внешнего магнитного поля. Это позволяло за те доли микросекунды, пока магнитное поле «ест» сверхпроводимость имевшего ширину в несколько миллиметров кольца, успеть «накачать» существенную энергию в соленоид. Когда же фронт фазового перехода достигал внутренней границы кольца, ток, а значит, и магнитный момент менялись очень быстро. Оказалось, что эмиссия РЧЭМИ существенна, хотя и уступает по мощности излучению ЦУВИ почти два порядка.

Ценность сверхпроводникового излучателя состояла в том, что его можно было сделать невзрывным (например, получив импульс тока в соленоиде от кабельного формирователя), и в этом качестве использовать для исследований воздействия сверхширокополосного РЧЭМИ на электронику в лабораторных, а не полигонных условиях, что во многих случаях более удобно.

Результаты опытов по определению критических токов в сверхпроводниках были представлены на конференции в Самарканде. Был представлен на международной конференции и доклад об излучателе.

В новом ЦУВИ — сборке Е-23 — УВ в рабочем теле (РТ) создавалась уже не контактной детонацией, а ударом сжимаемого взрывом лайнера. Схему этой сборки, на взгляд автора, приводить излишне: Достаточно открыть рис. 4.21 главы 4 и представить, что на оси катушки, поддерживаемое двумя фланцами, располагается цилиндрическое рабочее тело. Взрыв сжимал катушку, выполняя две функции: дополнительного увеличения магнитного поля (рис. 5.20) и формирования сходящейся волны в РТ. Сборки Е-23 работали не без сбоев, но показали хорошие результаты.

Рис. 5.19. Схема излучателя с переключающим элементом из сверхпроводника

Потом началась серия испытаний на полигоне Кызбурун-3. Исследовались сборки Е-23 и их копии, увеличенные в два и три раза — надеялись получить данные, в которых отчаянно нуждались теоретики Бармина, чтобы завершить, наконец, расчеты. Идея опытов заключалась в следующем: не все необходимые параметры можно было измерить напрямую, но предполагалось подобрать такую комбинацию этих параметров, которая согласовывалась бы с расчетами для всех трех сборок различных размеров. Взрывы в Кызбуруне-3 в те дни были значительно более мощными, чем ранее, в соседнем поселке лопались стекла и перестали нестись куры.

Последнюю серию этого года провели в Арзамасе-16, испытав много новинок. Применение постоянных магнитов как источника начального поля в ВМГ было признано нецелесообразным: коэффициент усиления энергии в этом случае должен был составлять десятки тысяч, боеприпас с соответствующим СВМГ получался слишком «длинным», что ограничивало его применение в большинстве носителей. Испытали генератор тока, основанный на ударной демагнетизации пластин из электротехнического железа. Ферромагнитный генератор (ФМГ) уже был создан в Арзамасе-16 В. Стрекиным, нечто похожее разработали и для ЦУВИ (рис. 5.21). Расширяющаяся труба 1, прежде чем начать движение по виткам обмотки ВМГ, ударяла по набору 2 железных пластин, в котором системой постоянных магнитов 3 и магнитопроводов 4, было создано поле с индукцией около 2 Тл. Удар трубы формировал в железе волну, которая разрушала его доменную структуру, превращал из ферромагнетика в парамагнетик[80], освобождая заключенное в доменах поле. Поле вытеснялось в обмотку 5, где наводилась ЭДС. Сборка такого генератора была очень сложной, каждую пластину набора надо было изолировать (чтобы поле «выходило» по изоляции в обмотку, а не растрачивало свою энергию на нагрев металла вихревыми токами), и, кроме того, образовать из сложенных пластин конус (чтобы труба одновременно ударила по всем ним), для чего использовались клинья из бронзы. ФМГ работал нестабильно, но пара удачных опытов показала, что он значительно превосходит по генерируемой энергии системы постоянных магнитов: с одного кубического сантиметра набора пластин можно было получить до 0,5 Дж энергии токового импульса!

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии