За последние 20 лет картина, впрочем, опять несколько запуталась. Уже в 30-е годы, помимо названных элементарных частиц — протонов, нейтронов и электронов, — были открыты новые, а за последние годы число этих новых частиц ужасающе разрослось. В противоположность трем основным эти новые элементарные частицы нестабильны, т. е. способны существовать лишь весьма краткое время. Одни из этих частиц, которые мы называем мезонами, имеют продолжительность жизни около одной миллионной секунды, другие живут в течение сотой части этого времени, третий же сорт частиц, лишенных электрического заряда, живет в течение стобиллионной части секунды. За исключением нестабильности, новые элементарные частицы ведут себя совершенно так же, как и три стабильные первичные единицы материи.
На первый взгляд возникает впечатление, будто мы опять-таки оказались вынужденными допустить большое число качественно различных элементарных частиц, а это было бы крайне нежелательно в связи с основными предпосылками атомной физики. Но в экспериментах, проведенных в последние годы, выяснилось, что элементарные частицы могут превращаться друг в друга при соударении с затратой больших энергий. Когда встречаются две элементарные частицы с большой кинетической энергией, при их соударении возникают новые элементарные частицы — исходные частицы и их энергия превращаются в новую материю. Это обстоятельство можно проще всего описать, если мы скажем, что все частицы в принципе состоят из одного вещества, представляя собой лишь разные стационарные состояния одной и той же материи. В результате число 3, число первоэлементов, вновь сводится к числу 1. Существует одна-единственная материя, но она может находиться в различных дискретных стационарных состояниях. Одни из этих состояний стабильны — это протоны, нейтроны и электроны; множество же других нестабильны[45].
Хотя экспериментальные результаты последних лет вряд ли дают повод сомневаться в том, что атомная физика будет развиваться в этом направлении, до сих пор еще не удалось определить математически закономерности образования элементарных частиц. В настоящий момент атомная физика как раз занимается этой проблемой. Она решает ее как экспериментально — путем открытия новых частиц и исследования их свойств, — так и теоретически, стараясь законосообразно связать свойства элементарных частиц и записать их в математических формулах.
В этих попытках и всплыли те трудности с понятием времени, о которых я говорил выше. Изучая соударения элементарных частиц предельно высоких энергий, следует принимать в расчет пространственно-временную структуру специальной теории относительности. В квантовой теории атомных оболочек эта пространственно-временная структура не играет существенной роли, потому что электроны атомных оболочек движутся относительно медленно. Здесь же имеют дело с элементарными частицами, движущимися почти со скоростью света. Их поведение можно, следовательно, описать только с помощью теории относительности. Эйнштейн пятьдесят лет назад обнаружил, что структура пространства и времени не столь проста, как мы представляем ее на основании повседневного опыта. Если мы называем прошлыми все те события, о которых мы можем, хотя бы в принципе, что-либо узнать на опыте, а будущими — те, на которые мы еще можем, хотя бы в принципе, воздействовать, то мы полагаем — в соответствии с нашим наивным представлением, — что между этими двумя группами находится бесконечно краткий момент, который можно назвать настоящим. Именно такое представление Ньютон и положил в основу своей механики.