Читаем SETI: Поиск Внеземного Разума полностью

Таково было состояние радиоастрономии, когда в 1959 г. в журнале «Nature» появилась статья Джузеппе Коккони и Филипа Моррисона «Поиск межзвездных коммуникаций», в которой они проанализировали возможности радиосвязи с внеземными цивилизациями. В отличие от 1920-х годов речь уже не могла идти о сигналах с Марса или других планет Солнечной системы. Авторы рассмотрели возможность приема сигналов от существ, обитающих на планетах, обращающихся вокруг других звезд.

Свои доводы в этом отношении Коккони изложил немногим раньше в письме к директору обсерватории Джодрелл Бэнк Бернарду Ловеллу от 29 июня 1959 г.

«1. Жизнь на планетах не представляется очень редким явлением. Из десяти солнечных планет на одной расцвела жизнь, а, может быть, какая-то жизнь имеется и на Марсе. Солнечная система не является чем-то необычным; можно ожидать, что другие звезды со сходными характеристиками обладают подобным же числом планет. Вероятно, скажем, из сотни ближайших к Солнцу звезд несколько имеют планеты, где существует жизнь, находящаяся на высокой ступени развития.

2. Вероятно также, что на некоторых из этих планет живые существа развились гораздо дальше, чем люди на Земле. Цивилизация, опередившая нашу всего на несколько сот лет, обладала бы гораздо большими техническими возможностями, чем мы сейчас.

3. Предположим, что существует развитая цивилизация на некоторых из этих планет, т.е. в пределах 10 световых лет от нас. Возникает вопрос, как установить с ней связь?»[7].

Коккони и Моррисон считали, что единственной возможностью установления межзвездной связи является использование электромагнитных волн. Не говоря уже о том, что они распространяются с предельно возможной для физического взаимодействия скоростью с ≈ 300 000 километров в секунду, электромагнитные волны свободно проходят через намагниченную межзвездную плазму (в отличие, например, от заряженных частиц, которые бесконечно блуждают по запуганным силовым линиям галактического магнитного поты). Следующий вопрос —

какой участок спектра электромагнитных волн надо выбрать для межзвездной связи? Ведь шкала электромагнитных волн простирается от радиодиапазона до рентгеновских и гамма-лучей, включая субмиллиметровую и оптическую (инфракрасную, видимую и ультрафиолетовую) области спектра. Вначале Коккони полагал, что предпочтительнее использовать гамма-лучи. Его привлекало то, что естественные источники гамма-излучения очень редки, поэтому искусственный источник было бы легко обнаружить. Однако при обсуждении с Моррисоном последний подверг эту идею острой критике, указывая на трудности генерации и приема гамма-излучения. Эти доводы нельзя признать убедительными, ибо они исходят из характера развития нашей земной техники. Но, в конечном счете, Моррисон оказался прав. Дело в том, что в гамма-диапазоне очень высок уровень так называемого квантового шума, затрудняющего передачу и прием информации. А это — принципиальное обстоятельство, не связанное с уровнем развития внеземных цивилизаций.

Рис. 1.1.1. Шкала электромагнитных воли

Далее, для того чтобы сигнал можно было бы обнаружить, он должен выделяться на фоне излучения звезды, вблизи которой движется обитаемая планета. Следовательно, надо использовать диапазон спектра, в котором излучение самой звезды относительно мало. Кроме того, необходимо, чтобы сигнал не испытывал сильного ослабления при распространении через среду между цивилизациями. Коккони и Моррисон нашли, что всем этим условиям удовлетворяют радиоволны в диапазоне от 300 м до 1 см (частота 1 ÷ 30000 МГц). Более длинные волны заметно поглощаются в межзвездной среде, более короткие — в земной атмосфере[8].

Оставался, однако, еще один -— главный вопрос — на какой частоте внутри этого диапазона следует искать разумный сигнал. В обычном радиовещательном приемнике мы легко переходим с одной частоты на другую, поворачивая ручку настройки, и обследуя таким образом довольно широкий диапазон спектра. Но предельно-чувствительные радиоастрономические приемники предназначены, как правило, для наблюдения на одной определенной частоте. Они могут перестраиваться только в пределах очень узкого диапазона. Для исследования соседней полосы надо делать новый приемник. Перекрыть с помощью таких приемников весь свободный от поглощения диапазон радиоволн — технически очень сложная (почти безнадежная) задача.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука