Читаем SETI: Поиск Внеземного Разума полностью

Позднее Кардашев рассмотрел случай, когда поиск ведется от определенных объектов. В этом случае необходимо учитывать радиоизлучение фона в окрестности рассматриваемого источника, а также рассеяние радиоволн в окружающей его плазме. В качестве подходящих объектов он рассматривал центр Галактики, ядра других галактик и квазары. Анализ показал, что в этом случае оптимальной оказывается область максимума интенсивности реликтового фона вблизи λ = 1,7 мм. Поиск сигналов от звезд при условии использования взаимнонаправленного канала также приводит к миллиметровому диапазону вблизи λ = 1,5 мм. Как раз в этом диапазоне находится линия позитрония λ = 1,47 мм, которую можно рассматривать как удобный репер, аналогичный линии 21 см в дециметровом диапазоне. На основании этих соображений Кардашев пришел к выводу, что для изотропно излучающего передатчика оптимальной является длина волны 21 см, а для направленного излучения 1,5 мм[352]. На преимущество мм-диапазона, исходя из энергетических соображений, указывал В. С. Троицкий[353]. Согласно расчетам автора, оптимальная длина волны для передачи импульсных сигналов с компенсирующими задержками также находится в миллиметровой области (λ = 5,35 мм, ν = 56 ГГц)[354].

Еще один подход к выбору частоты для межзвездной связи был предложен в 1991 г. В. С. Стрельницким и Л. М. Гиндилисом[355]. Анализ тонкой и сверхтонкой структуры возбужденного уровня n = 2 атома водорода показывает, что этот уровень распадается на 6 подуровней, при переходе между которыми возникает 6 спектральных линий. Все они попадают в радиодиапазон: три линии имеют частоты около 1 ГГц и три — около 10 ГГц. Ряд обстоятельств делает эти линии привлекательными для межзвездной связи. Во-первых, в отличие от линии 21 см (1420 МГц) основного уровня водорода n = 1, эти линии не подвержены помехам со стороны галактического радиоизлучения. Во-вторых, использование сразу шести линий дает богатые возможности для кодирования семантической информации.

Поскольку оптимальный диапазон волн нуждается в защитных мероприятиях, были предприняты соответствующие шаги в этом направлении: советские представители в Международном Союзе Электросвязи внесли предложения о защите частот для межзвездной связи. Они нашли отражение в Регламенте радиосвязи и других документах Международного Консультативного Комитета Радиосвязи (МККР). Несмотря на принятые решения, реальная ситуация с помехами на Земле и в околоземном космическом пространстве остается неблагоприятной, и имеется устойчивая тенденция ее ухудшения в будущем. Радикальное решение этой задачи возможно лишь на обратной стороне Луны, экранированной от радиоизлучений с Земли и околоземных орбит. В начале 1970-х годов Б. А. Дубинский предложил на МККР новый подход к выделению частот в экранированной зоне Луны: вместо обычного выделения отдельных частотных полос для различных космических служб связи и радиоастрономии считать весь спектр радиочастот в этой зоне предназначенным для радиоастрономии и других пассивных радиофизических исследований, включая SETI. В результате активной разъяснительной работы этот подход был признан, и в 1979 г. Всемирная Административная Конференция по радиосвязи включила в Регламент радиосвязи специальное постановление, которое является юридической основой признания экранированной зоны Луны заповедником для пассивных радиоисследований. Это решение одновременно является мерой по защите окружающей среды.

<p>7.2.4. Радиосвязная стратегия SETI.</p>

Основные направления радиосвязной стратегии SETI были сформулированы еще на 1-м Всесоюзном совещании по поиску внеземных цивилизаций в 1964 г. Одно направление, связанное с поисками цивилизаций нашего и несколько более высокого уровня, ориентировалось на поиск узконаправленного и узкополосного излучения; другое ориентировалось на поиск сигналов от Сверхцивилизаций (см. гл.1). Несколько интересных идей относительно поиска сигналов ВЦ были высказаны П. В. Маковецким. Главная трудность состоит в неопределенности всех существенных параметров сигнала. Маковецкий предположил, что ВЦ осуществляют передачу позывных в виде узкополосных синусоидальных сигналов на частотах πFH и FH/π, где FH — частота радиолинии водорода 21 см. По его мнению, это не только сокращает неопределенность в частоте, но и позволяет установить искусственный характер сигнала[356]. Для сокращения неопределенности во времени он предложил использовать синхронизацию по вспышкам сверхновых и новых звезд. Как раз незадолго перед этим, в 1975 г., произошла вспышка Новой в созвездии Лебедя.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука