Читаем SETI: Поиск Внеземного Разума полностью

Выбор субъекта зависит от трех величин х1 , х2, х3. Величина х1характеризует давление среды: х1 = 1, если мир диктует субъекту сделать положительный выбор; х1 = 0, если мир диктует субъекту сделать отрицательный выбор. В общем случае х1 — вероятность того, что мир диктует положительный выбор, 0 ≤ х1 ≤ 1. Поведение субъекта определяется не только давлением среды но и его представлением об этом. Величина х2 характеризует представление субъекта о том, что ему диктует мир. Если субъект думает, что мир диктует ему выбрать добро, х2 = 1; если он думает, что мир диктует ему выбрать зло, х2 = 0. В общем случае х2 — это вероятность того, что субъект думает, будто мир диктует ему выбрать добро, 0 ≤ х2 ≤ 1. Наконец, х3 характеризует желание самого субъекта: х3 = 1, если субъект желает сделать позитивный выбор, и х3 = 0, если он желает сделать негативный выбор. В общем случае х3 — вероятноесть, того, что субъект хочет сделать позитивный выбор, 0 ≤ х3 ≤ 1. Поведение субъекта есть функция величин х1 , х2, х3. Это можно записать в виде Y1 = f(х1 , х2, х3). Чтобы иметь возможность делать конкретные численные прогнозы, надо знать вид функции f(х1 , х2, х3).

В модели Лефевра зависимость Y1 = f(х1 , х2, х3) дастся простым алгебраическим выражением:

Y1 = х1 + (1 — х1 х2 + х1х2) х3; (5.14а)

или

Y1 = х1 + (1 — х1)(1 — х2) х3 . (5.14б)

Пусть х1 = 0 и х2 = 0, тогда Y1 = х3 , т. е. поведение субъекта совпадает с его желанием. А это означает, что субъект обладает свободой воли. Правда, свобода воли реализуется при единственном наборе значений параметров х1 и х2 (х1 = х2 = 0). Пусть при этом х3 = 0, тогда Y1 тоже равен нулю, это представляется тривиальным. Гораздо интересней другой крайний случай: х3 = 1, Y1 = 1. Значит, если субъект желает выбрать добро, то он выбирает его, несмотря на то, что мир толкает его к противоположному выбору (х1= 0), и он знает об этом (х2 = 0). Отсюда следует, что если субъект сделал негативный выбор (Y1 = 0), то его внутреннее желание было негативным. То есть субъект, имеющий свободы воли, несет ответственность за свой выбор.

Вероятность х3 , с которой субъект намерен сделать тот или иной выбор, вообще говоря, отличается от вероятности Y1 с которой он реально делает этот выбор. Если Y1 х3 , это значит, что субъект хочет сделать один выбор, а фактически (под влиянием обстоятельств) делает другой выбор, т. е. его желание, его внутренний выбор является нереалистичным. Если при некоторых значениях параметров и х2 выбор Y1 = х3 , то такой выбор можно считать реалистичным. Субъект, для которого выбор всегда (при любых значениях параметров х1 и х2) реалистичен, Лефевр называет Реалистом. Для Реалиста:

Следующий шаг связан с введением полезности альтернатив. Смысл этого понятия можно уяснить с помощью такого примера. Пусть некто хочет продать свой пистолет. Он может сдать его в полицию и получить 20 долларов, а может продать торговцу оружием и получить 50 долларов. Однако в этом случае пистолет может попасть в руки преступника. Сдача пистолета в полицию ассоциируется с позитивным выбором, а продажа торговцу оружием — с отрицательным. Полезность в данном случае ассоциируется с выгодой, измеряемой ценой пистолета в том или другом случае. Позитивный выбор имеет полезность 20, негативный — 50. Математически задача аналогична психологическому эксперименту, когда испытуемому предъявляется набор стержней разной длины, затем набор убирается, демонстрируется один из ранее показанных стержней, и испытуемый должен ответить на вопрос, каким является данный стержень — длинным или коротким. Здесь полезности определяются в единицах «похожести» на самый длинный или самый короткий стержень. Но смысл их тот же.

Обозначим полезности позитивного и негативного полюса на неосознанном уровне υ1 , υ2, а те же полезности на уровне знания u1 , u2. Величину х1 можно интерпретировать как давление в сторону позитивного выбора на неосознанном уровне, а величину х2 как давление в сторону позитивного выбора на осознанном уровне (или уровне знания), соответственно (1 — х1) — давление в сторону негативного выбора на неосознанном уровне, а (1 — х2) давление в сторону негативного выбора на уровне знания. Предполагается, что величина давления пропорциональна полезностям альтернатив. То есть:

Подставляя эти значения х1 и х2 в (5.15), получим:

В задаче о продаже пистолета можно положить υ1 = u1 = 20, υ2= u2 = 50. Следовательно,

То есть модель предсказывает, что при данных условиях человек сдаст свой пистолет в полицию с вероятностью 0,583.

Интересным свойством модели является то, что она позволяет отделить добро от пользы. Пусть субъект имеет позитивную интенцию (желание выбрать добро), т. е. х3 = 1, и пусть при этом он неукоснительно выбирает добро (Y1 = 1). Такому выбору соответствует уравнение f(х1 , х2, 1) = 1, или в развернутом виде:

х1 + (1 — х1)(1 — х2)1 = 1. (5.19)

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука