Читаем SETI: Поиск Внеземного Разума полностью

Теперь надо выбрать условия уже внутри самой планетной системы. Для этого мы должны исходить из определенных представлений о том, какие условия необходимы для возникновения и развития жизни. А это неизбежно приводит к вопросу, который нам, возможно, хотелось бы избежать — о формах и субстрате внеземной жизни. Желая сохранить твердую почву под ногами и следуя уже избранному пути, мы вынуждены ограничиться единственно известной нам формой жизни и в качестве «нормы существования» принять условия, необходимые для возникновения и развития водно-углеродной, белково-нуклеиновой жизни. Таким путем мы найдем, по крайней мере, нижнюю границу интересующего нас фактора.

Чтобы обеспечить необходимый температурный режим, планета должна находиться в пределах так называемой «зоны жизни» или экосферы (см. § 3.2). Размеры ее зависят от температуры центральной звезды. Так, для Солнца экосфера простирается от 0,7 а. е. до 1,3 а. е., а для красного карлика класса М5 — приблизительно от 0,02 до 0,05 а. е. Кроме того, масса планеты (как уже отмечалось в предыдущем параграфе) должна быть достаточна для удержания атмосферы, но не слишком велика. Оба эти условия приводят к тому, что планета подходящих размеров должна находиться на подходящем расстоянии от своей звезды. Какова вероятность выполнения этих условий? В Солнечной системе из 9 планет лишь одна — наша Земля — находится в пределах зоны жизни[253] и имеет к тому же подходящие размеры. Исходя из этого можно заключить, что для Солнечной системы вероятность нахождения подходящей планеты в подходящем месте составляет приблизительно 0,1. Можно принять эту оценку в качестве типичной для других планетных систем. Пусть n — среднее число планет в планетной системе (по аналогии с Солнечной системой можно принять n ≈ 10), тогда:

Отметим, что некоторые авторы учитывают долю звезд подходящих спектральных классов и долю подходящих звезд с устойчивыми планетными орбитами при оценке фактора fp . Поэтому для сопоставления результатов различных авторов удобней использовать величину fpne . Эта величина приводится в 3-м столбце таблицы 4.3.1.

Перейдем теперь к оценке вероятностей РL , Рi , Рс . Начнем с вероятности происхождения жизни РL . В п. 4.2.3 мы познакомились с тем, как образуются основные «строительные блоки» биохимии (аминокислоты, нуклеотиды и т. д.) и как из этих «кирпичиков» путем полимеризации возникают более сложные органические молекулы. Но там же мы отмечали, что до сих пор остаются полностью неясными последующие этапы происхождения жизни. Прежде всего — каким образом «запускается» механизм наследственности, как возникают системы такого уровня сложности, начиная с которого вступает в силу естественный отбор, характерный для живых систем.

Существует точка зрения (и она активно пропагандируется в популярной литературе), согласно которой образование первых белковых молекул и первых молекул ДНК произошло чисто случайно — путем случайного сочетания имевшихся в первобытном океане простых молекул. А так как вероятность случайного образования достаточно сложных систем (какими, несомненно, являются живые системы) исчезающе мала, то, с этой точки зрения, происхождение жизни на Земле является чудом, повторение которого где-либо в другом месте Вселенной крайне маловероятно. Рассмотрим в качестве иллюстрации вероятность случайного образования одного из хорошо известных белков — гемоглобина. Молекула гемоглобина состоит из 4-х полипептидных цепей по 150 элементов (звеньев) в каждой цепи. Всего, таким образом, имеется 600 звеньев, каждое звено — это молекула той или иной аминокислоты. Поскольку в состав живых организмов входит 20 различных аминокислот, то число всевозможных комбинаций из 20 аминокислот при длине цепочки 600 звеньев равно 20600, и вероятность чисто случайного образования молекулы гемоглобина составляет 1/20600 = 10-780 (!) — число практически не отличающееся от нуля. Если же принять во внимание все существующие в природе аминокислоты, а не только те, что входят в состав живых организмов (ведь первоначальный отбор должен был производиться из всех аминокислот), то вероятность упадет до величины 10-1200. И это для простейшего из белков! Если же взять молекулу ДНК, входящую в состав наших хромосом, то вероятность ее чисто случайного возникновения равна — величина, которая «доказывает» абсолютную невозможность происхождения человека.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука