Читаем SETI: Поиск Внеземного Разума полностью

Помимо формулы Дрейка, различными авторами были предложены иные формулы для подсчета числа цивилизаций. Но процедура подсчета, в общем, остается неизменной. Она сводится к следующему. Определим тем или иным способом число подходящих мест, на которых могут возникать коммуникативные цивилизации, отберем из них те, на которых цивилизации действительно возникают, и умножим полученное число на вероятность застать цивилизацию в данный момент в коммуникативной фазе. Соответственно, общая формула для подсчета числа цивилизаций будет иметь вид

Nc(T) = N0Fq ; (4.6)

N0 — число подходящих мест (существующих в момент Т либо образующихся за время от 0 до Т), F — фактор выборки, учитывающий то обстоятельство, что не в каждом подходящем месте возникает коммуникативная цивилизация, q — вероятность того, что любая из наугад взятых коммуникативных цивилизаций находится в момент Т в коммуникативной фазе. Применяя разные способы выборки и различные выражения для вероятности, получают разные модификации формулы (4.6). Сводка основных модификаций содержится в нашей статье[249]. Отметим, что в формуле (4.6) отбор осуществляется по отношению к числу подходящих мест. В формуле Дрейка он ведется по отношению к общему числу звезд. Если же вести его по отношению к числу подходящих мест (каковыми в формуле Дрейка являются планеты с подходящими условиями), то фактор выборки F будет определяться произведением вероятностей Р = PLPiРc .

Описанную процедуру можно применить к любой ограниченной области Вселенной. В большинстве случаев она рассматривается применительно к Галактике. Что касается подходящих мест, то хотя при обсуждении этого вопроса рассматривались различные возможности: возникновение жизни на кометах, остывших звездах и в межзвездной среде, обычно при подсчетах числа цивилизаций (как и в формуле Дрейка) в качестве подходящих мест имеются в виду лишь планеты с благоприятными для возникновения жизни условиями. В этом случае N0 = Nfpпе .

Использование в качестве подходящих мест для возникновения коммуникативных цивилизаций только планет с благоприятными для возникновения жизни условиями означает, конечно, определенное ограничение возможностей, определенную уступку «планетному шовинизму», ибо при этом исключаются разнообразные не планетные формы жизни, рассмотренные нами в пунктах 4.2.4 и 4.2.5. Однако такое ограничение, по-видимому, неизбежно, ибо иначе нам грозит опасность сойти с позиций более или менее твердо установленных фактов и знаний и устремиться в лоно ничем не ограниченных спекуляций. Просто надо иметь в виду, что оценки, полученные на основе приведенных формул, в силу отмеченных ограничений, дают только нижнюю границу числа коммуникативных цивилизаций. С учетом не планетных форм жизни они могут быть значительно увеличены.

Надо сказать, что при количественных подсчетах те или иные допущения неизбежны: это как раз та цена, которую приходится платить за отказ от умозрительных качественных рассуждений. Строго говоря, разделение процесса происхождения коммуникативной цивилизации на три этапа: жизнь → разум → цивилизация, при всей кажущейся очевидности такого подхода, тоже является определенным ограничением[250], тоже представляет собой известную дань «антропоморфизму», ибо следует тому пути, каким этот процесс прошел на Земле.

Впрочем, не будем преувеличивать степень «антропоморфизма», с которым мы сталкиваемся при использовании формулы Дрейка. В отличие от некоторых более поздних «усовершенствований», где с излишней детализацией выписываются многочисленные сомножители, учитывающие факторы, оказавшие влияние на происхождение жизни на Земле и ход ее эволюции, увенчавшейся появлением современного технологического общества, — в формуле Дрейка учитываются только самые важные факторы: происхождение жизни, не обязательно полностью похожей на нашу; происхождение разума, не обязательно точно такого, как наш; происхождение технологии, не обязательно повторяющей наш путь. Вместе с гем эта формула позволяет очертить область необходимых исследований: первые два сомножителя (Rи fp) относятся к компетенции астрономии, третий пe к компетенции астрономии и биологии; РL это область предбиологической химии; Рi , — область эволюционной биологии; Рс и L относятся к компетенции социальных наук. Одним словом, несмотря на неизбежно присущую ей ограниченность, формула Дрейка представляет собой удобный и полезный для анализа инструмент.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука