Читаем SETI: Поиск Внеземного Разума полностью

Предположим, передающая ВЦ знает (или имеет достаточно оснований надеяться), что ближайшая к ней цивилизация находится на расстоянии 3000 св. лет, в сфере, где имеются 108 звезд. Она может выбрать из них подходящие звезды, около которых ожидается наличие планет и разумной жизни на них. Доля таких звезд составляет приблизительно 5 %. Значит, надо будет обследовать 5 млн звезд. Облучать одновременно все звезды невозможно. Для этого потребовалось бы построить 5 миллионов гигантских антенн площадью 105 м2 каждая. Но главное даже не в этом: с каждой антенной должен быть связан передатчик мощностью 100 МВт, тогда полная мощность, излучаемая всеми антеннами, составит 5 • 1014 Вт, что значительно превышает энергетический потенциал цивилизаций I типа.

Остается единственная возможность поочередно облучать все 5 млн подходящих звезд. При этом принимающая цивилизация также будет производить поиск, обследуя 5 млн подходящих звезд, расположенных в радиусе 3000 св. лет от нее, среди которых лишь одна (!) посылает сигналы межзвездной связи. Эти сигналы могут быть обнаружены лишь в том случае, если в момент, когда наша антенна смотрит на передающую ВЦ, их антенна в этот момент направлена на нас. Конечно, вероятность такого события при обследовании миллионов звезд крайне мала и, следовательно, время поиска очень велико. Задачу поиска можно упростить, если на приемном конце линии связи принимающая цивилизация построит систему обнаружения, которая перекроет все небо или, по крайней мере, все подходящие звезды. Число антенн в такой системе обнаружения огромно. В нашем примере надо было бы соорудить не менее 5 млн антенн, причем гигантских размеров. Сооружение даже одной такой антенны составляет серьезную техническую задачу для цивилизации нашего уровня.

Но это еще не все. В нашем примере передающая ВЦ посылает монохроматические сигналы с полосой частот 2 Гц. Это не случайно. Более широкополосные сигналы на таком расстоянии при имеющейся мощности невозможно было бы обнаружить. А для обнаружения узкополосных сигналов надо точно знать их частоту. Если же она неизвестна, то приходится проводить сканирование по частоте. То есть к проблеме поиска сигнала по направлению добавляется проблема поиска по частоте. Предположим, что используется частота радиолинии водорода 1420,4 МГц. Она известна с высокой точностью. Но вследствие движения звезд, передатчик движется относительно приемника, и поэтому частота сигнала смещается на величину, зависящую от относительной скорости их движения по лучу зрения. Так как скорости звезд различны, то и сигналы будут испытывать различное смещение. А поскольку нам неизвестно, где, около какой звезды, находится передатчик, то необходимо обследовать всю полосу частот, в пределах которой может смещаться частота сигнала. Эта полоса достигает величины от долей мегагерца до нескольких мегагерц. Разыскать в такой полосе сигнал шириной несколько герц— очень тяжелая задача. Если осуществлять последовательный поиск, перестраивая частоту приемника, то на обследование всей полосы поиска потребуется слишком много времени. При этом не исключена такая ситуация, когда мы попадаем в луч передающей антенны, и сами в этот момент смотрим на нее, но пока мы будем производить поиск по частоте, перестраивая приемник, передающая ВЦ отвернет свою антенну, направив се на другую звезду (ведь ей в каждом цикле передачи надо облучить миллионы звезд, поэтому она не может тратить много времени на одну звезду). Конечно, это было бы очень обидно! К счастью, существует более подходящий способ поиска сигнала по частоте — использование многоканальных приемников, состоящих из множества отдельных узкополосных каналов, которые в совокупности перекрывают всю подлежащую исследованию полосу частот. Для межзвездной связи такие приемники должны содержать миллионы каналов. В настоящее время подобные многоканальные приемники уже созданы, и с их помощью ведется поиск сигналов.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука