«Не нужно обладать особым даром предвидения, чтобы предсказать заранее то недалекое время, когда «холодный свет» станет для каждого из нас столь же неизбежным и привычным предметом обихода, каким является электрическая лампа накаливания.
«Холодный свет» — это единственное рациональное решение светотехнической проблемы, это освобождение от проторенной дороги тепловых источников света, на которую толкает нас природа, это овладение природой, ее переделка. «Холодный свет» — это неотъемлемая часть культурной жизни будущего коммунистического общества. Наша обязанность — приблизить осуществление и повсеместное распространение «холодного света»[25].
Глава 4. Поющий электрон
Когда предки современных экспериментаторов — алхимики — в поисках «философского камня» приближались к двери, ведущей к раскрытию тайны тончайшего строения материи, они догадывались, что за этой дверью их ждет не только рецепт превращения одних веществ в другие, но и некая фантастическая сила, которая сможет причинить людям как добро, так и зло. Задумываясь над последствиями неосторожного обращения с нею, они предупреждали дальнейшие поколения ученых:
«Не допускайте в ваши мастерские силу и ее рыцарей, ибо эти люди употребляют во зло священные тайны, ставя их на службу насилию».
Увы, заветы алхимиков были основательно забыты, когда физики штурмовали цитадель атома. Пожалуй, тем заветам не придали бы значения, если б их и помнили. Но в то время как большинство ученых не думало об опасностях, таящихся в микромире (и тем порой пассивно помогало злу), были и такие, кто активно и сознательно искал в нем добрую силу, способную помочь людям лучше устроить свою жизнь.
От лица таких ученых французский физик Фредерик Жолио-Кюри, получая в 1935 году вместе со своей женой Ирен Нобелевскую премию за открытие явления искусственной радиоактивности, сказал:
«Мы отдаем себе отчет в том, что ученые, которые могут создавать и разрушать элементы, способны также осуществлять ядерные реакции взрывного характера… Если удастся осуществить такие реакции в материи, то, по всей вероятности, будет высвобождена в огромных количествах полезная энергия».
Вавилов не был ученым-атомником в чистом смысле. Фотоны, которые он изучал, являлись только частью необъятной области простейших частиц материи. А изучал их Сергей Иванович как часть светового раздела физики. Но исследовал их в их взаимодействии с молекулами и атомами. Он применял законы квантовой механики, и его открытия обогащали теорию и практику науки о микромире. Так что ученые-атомники вполне могут считать Вавилова «своим».
Много на земле профессий, которые по самому своему характеру являются «добрыми» и которые лучше всего представляются добрыми же людьми. Например, учителя, врачи. Само по себе занятие наукой — сфера нейтральная, безотносительная к добру и злу. Но есть люди, которые умудряются как-то передавать черты своего характера и науке, как любому другому нейтральному занятию.
Все работы Вавилова в области физической оптики, все его открытия служили благу человека. Даже самые, казалось бы, отвлеченные теоретические положения Вавилова в конечном счете оборачивались полезными делами практики.
Хороший тому пример — открытие явления, сейчас всем хорошо известного, — «свечения Вавилова — Черенкова» — и последствия этого открытия.
В 1932 году, когда Сергей Иванович находился уже в Ленинграде, в его лаборатории на набережной Невы стал работать молодой аспирант Павел Алексеевич Черенков. Подобно многим другим, и Черенков прошел тщательную тренировку для работы в темноте. Свой рабочий день он долго начинал с того, что добрый час сидел в совершенно темной комнате, ничего не делая, затем подходил к приготовленным заранее приборам и приступал к исследованиям.
Вавилов хорошо разбирался в людях и быстро выносил почти всегда безошибочные суждения о том, что может и чего не может тот или иной сотрудник. Очень скоро оценив способности и усидчивость нового своего аспиранта, Сергей Иванович поручил ему сложное и длительное исследование люминесценции ураниловых солей под действием жестких невидимых гамма-лучей. Для юноши потянулись долгие, порою окрыляющие, но чаще полные недоумений и загадок дни опытов…
Ураниловая соль, растворенная в воде в определенной концентрации, светится под влиянием гамма-облучения. В полном соответствии с законом Вавилова — Стокса огромные гамма-кванты источника излучения (ампулы с радием) преобразуются в малые кванты видимого света.
Люминесценция налицо.
«Интересно, — рассуждал Черенков, — как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водою? Важна, конечно, не общая картина, а точно выраженный физический закон».
И вот, посоветовавшись с руководителем, аспирант Вавилова доводит концентрацию до некоторого максимума, затем постепенно понижает ее.
Все идет как ожидалось: меньше растворено солей — меньше люминесценция. Это естественно, так как холодное свечение вызывается возбуждением молекул соли, а не воды.