Но прежде чем должна была начать функционировать система посадки, срабатывала тормозная двигательная установка, импульс которой должен был перевести корабль с орбиты на траекторию спуска. Двигатель этот был создан на другом предприятии — под руководством А. М. Исаева.
А вот способ ориентации, с помощью которого корабль должен быть выставлен так, чтобы импульс тормозного двигателя был направлен против направления полета, предстояло еще найти. Задача сводилась, по существу, к отысканию в полете местной горизонтали и направления полета. Оптические датчики горизонта, подобные тем, которые были применены для лунных аппаратов, здесь не годились: момент ориентации мог попасть на время прохождения тени. Поэтому решено было применить инфракрасный построитель вертикали, датчики которого фиксировали границу между «холодным» космосом и «теплой» Землей.
После определения вертикали, а следовательно, и плоскости горизонта с помощью гироорбитанта отыскивалось направление полета. Продумано было, казалось бы, неплохо, но возникли сомнения в надежности системы: приборы были очень деликатными, и к тому же им предстояло работать в вакууме. Поэтому для подстраховки решили добавить к ней очень простую, но надежную солнечную систему ориентации.
Идея заключалась в следующем: так подобрать время старта и орбиту, чтобы в момент торможения направление на Солнце хотя бы приблизительно совпадало с нужным направлением тормозного импульса, и тогда, поймав Солнце простейшим датчиком, смотрящим вдоль оси двигателя, можно было включать его.
Инфракрасная система отказала на первом же пуске беспилотного корабля. В построителе вертикали использовался сложный высокооборотный механизм, который в полете заклинило (так мы впервые столкнулись с проблемой трения в космическом вакууме). Зато солнечная система действовала безотказно.
Выбрать средство для создания управляющих моментов было делом нетрудным. Условия полета сами продиктовали нам путь — мы применили реактивные сопла, работающие на сжатом азоте. Поначалу решили поставить еще реактивные микродвигатели для ориентации на участке спуска в атмосфере, но потом от них отказались.
Как работает в космосе система ориентации, представить нетрудно. Но вот вопрос: как ее испытать на Земле? Когда мы поняли, что понадобится испытательная установка, проектировать и заказывать было уже поздно, вернее, это было связано с существенной затяжкой работ. И кто-то у нас придумал остроумный выход: подвесить корабль на тросе, качать в разные стороны и смотреть, как работают сопла. Управленцы нас сначала на смех подняли, но и сами ничего лучше предложить не смогли. Кстати, на этом «стенде» обнаружили однажды ошибку в установке блока датчиков угловых скоростей. Через некоторое время (для «Союзов») у нас появилась специальная испытательная платформа для проверки реакции системы управления на угловые перемещения корабля.
Известно было, что ниже 160 километров спутники почти не держатся на орбите — сразу тормозятся. Чтобы обеспечить полет в несколько суток, высота орбиты в перигее должна быть километров 180―190. Но не больше, так как на случай отказа системы ориентации или двигателя мы хотели иметь такую орбиту, чтобы не более чем за 10 дней корабль затормозился бы за счет сопротивления атмосферы. Называлось это «запасным вариантом спуска за счет естественного торможения». Высота в апогее в соответствии с этими же соображениями выбиралась в пределах 250―270 километров.
Наш первоначальный проект — это как бы исходная диспозиция для предстоящего наступления. Она включает в себя компоновку корабля, состав и размещение оборудования, основные характеристики и циклограмму — увязанную предварительную программу работы машины: что, когда и после чего включается, работает и выключается. Потом, конечно, выясняется, что какая-то система в действительности работает не так или вообще не годится. Особенно напряженная борьба между проектантами и конструкторами шла опять же вокруг веса. Споры на эту тему у нас были постоянными. Иногда это походило на какой-то базар. Мы им говорим: «Этот узел, который должен делать то-то и то-то, и не дай бог не сделать того-то и того-то, должен весить 30 килограммов». Хотя сами знаем, что это очень трудно, даже невозможно. Они, разумеется, говорят: «Ха! Если хотите, чтобы все именно так работало, готовьтесь к 150 килограммам». Мы: «Об этом и думать не думайте. 50 килограммов — это уж так, из-за хорошего к вам отношения». Приносят они нам узел — 80 килограммов. И тут мы честно признаемся, что меньше 100 от них не ждали. Однако чаще все-таки узел оказывался тяжелее, чем нам хотелось бы. Вообще-то, проектант должен уметь отстаивать свои идеи и расчеты, но выстроены они должны быть на строгой теоретической основе и качественной компоновочной, временной, тепловой и прочей увязке.