Читаем Семь шагов в электронику полностью

И если при замене менее «мощной» детали на более «мощную» устройство стало греться сильнее — значит, именно так и должно было произойти! Конструкция всегда права, а мы — всегда неправы! И потому единственное, что нам остается в этой ситуации — вновь сесть за осциллограф, и шаг за шагом проверить работу конструкции, чтобы найти ошибку — нет-нет, не в конструкции, не обольщайтесь! — в наших с вами представлениях о ее работе. Итак, подключаем к блоку питания осциллограф (см. рис. 8.11) и смотрим сигнал на затворах полевых транзисторов.

Все хорошо, ничего неожиданного мы не видим, но нас отчего-то смущает какая-то округлость вершин импульсов (точка Б), как будто у них немножко срезаны кончики. Да и вертикальные «черточки» импульсов почему-то не выглядят такими уж вертикальными, у них есть довольно заметный наклон. Что-то с микросхемой? Ну-ка, возвратим-ка мы схему в предыдущее состояние, и посмотрим, как дело обстоит там!

Изгнание огненного духа. Эпизод 1. Финал

Ну да, новый вариант немного отличается от того, что мы видели перед этим — округлостей вершин почти нет, да и сами импульсы куда больше похожи на прямоугольные. И тут же память наша услужливая подсказывает нам — емкость! Емкость затвора!

Чем мощнее транзистор, тем емкость затвора у него больше. А чем больше емкость затвора, тем дольше длится процесс ее перезаряда, тем дольше полевой транзистор находится на активном участке своей характеристики, где нагрев его максимален. Это, да еще и эффект того самого Миллера в придачу, и вызвал такой неожиданный для нас нагрев. А микросхема-то, микросхема! Вот как она старается перезаряжает затвор! Оттого и стала она гораздо горячее, чем была до замены.

Ну вот, огненный дух, кажется, выведен на чистую воду. Теперь самое время заняться «вторым проклятым вопросом» — что делать?

Напрашивается в данной ситуации одно-единственное решение — сократить время перезаряда затвора. Сделать это можно двумя способами:

♦ либо уменьшить сопротивление цепи перезаряда;

♦ либо уменьшить емкость затвора полевого транзистора.

Уменьшить сопротивление цепи перезаряда — хорошая идея. Достаточно поставить на выход микросхемы сдвоенный эмиттерный повторитель — и можно будет перезаряжать емкость затвора с гораздо большей скоростью. Уменьшить емкость затвора мы при всем желании не можем — емкость эта скрыта в недрах полевого транзистора, и уменьшить ее можно разве что подпилив кристалл надфилем! Нет, этот путь отпадает. Хотя…

Ах, опять это радиолюбительское «хотя»! Вдруг ни с того ни с сего на ум приходит одна идея. Каскодный ключ! Ключ, состоящий не из одного, а из двух полевых транзисторов. Нижний по схеме транзистор — низковольтный, но достаточно высокочастотный, включен по, схеме ОИ. Верхний — высоковольтный — по схеме ОЗ. Частотные свойства такой связки определяются нижним транзистором ключа, а ведь низковольтные полевые транзисторы имеют намного лучшие частотные свойства! Допустимое же напряжение такой связки определяется характеристиками верхнего транзистора. И — самое главное, — у нижнего транзистора эффект Миллера практически отсутствует, а это означает, что перезаряжаемая емкость уменьшится чуть ли на порядок. Да, конечно, два транзистора дороже одного, но мы же с вами не завод по производству блоков питания. На хорошее дело можно и потратиться.

Замечательная, конечно идея. Жаль только, что вновь придется переделывать схему (см. рис. 8.12).

Рис. 8.12.Вариант автогенератора с каскодными ключами

Второе «длинное» включение

Итак, печатная плата разведена и изготовлена, детали с прежней платы благополучно мигрировали на новую, новых проблем с электрической частью не обнаружено, и теперь мы устраиваем нашей схеме второе «длинное» включение. Чтобы не повторяться — сразу озвучим результат:

♦ двухобмоточный дроссель корректора мощности разогрелся выше всяких ожиданий, свечка плавится;

♦ трансформатор всего лишь теплый;

♦ силовой ключ корректора мощности нагрелся вместе с радиатором до плавления свечки;

♦ диод корректора коэффициента мощности нагрелся настолько, что прогон пришлось остановить;

♦ микросхема корректора мощности практически холодная;

♦ выпрямительный мостик ощутимо нагрелся, но свечку не плавит;

♦ микросхема автогенерирующего конвертора практически холодная;

♦ ключевые транзисторы'конвертора слегка нагрелись (причем более теплыми ощущаются «нижние» ключи каскодной схемы);

♦ сдвоенный диод выпрямителя напряжения накала вместе с радиатором нагрелся, но свечку не плавит.

Ну что же, за такой результат можно только искренне порадоваться!

Особенно радует то, что практически перестала нагреваться микросхема автогенератора — чем меньше греется та или иная деталь, тем выше надежность ее работы. Ну а теперь продолжим исправлять проблемы с тепловым режимом в остальных компонентах конструкции. И теперь самое бросающееся в глаза критическое место — корректор коэффициента мощности.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника