Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

Оригинальное доказательство Линдемана основано на тех же примерах, которые за несколько лет до того использовал Шарль Эрмит (1822–1901) для доказательства трансцендентности числа е — еще одной известной константы. Линдеман пришел к выводу, что линейная комбинация степеней е с коэффициентами Ak и показателями степени Bk (вещественными или комплексными)

А1ев1 + А2ев2 + … + Аnевn

не может быть равной нулю (за исключением случая, когда все коэффициенты нулевые). Так как знаменитая формула Эйлера может быть записана в следующем виде:

eπi + 1 = eπi + e0 = 0,

она удовлетворяет условиям Линдемана (А1 = A2 = 1, B1 = πi, В2 = 0), поэтому πi не может являться алгебраическим числом, равно как и само π. Число π не является алгебраическим, следовательно, оно трансцендентно. Так как оно трансцендентно, его нельзя получить построением с помощью циркуля и линейки. Конечно, за этим последовали новые, менее сложные доказательства, но и приведенных выкладок было достаточно, чтобы снять завесу тайны с числа π. До Линдемана было известно, что трансцендентность числа π означает, что задача о квадратуре круга нерешаема. Доказательство Линдемана положило конец поискам решения этой легендарной задачи. Было окончательно установлено: задача о квадратуре круга не имеет решения.

<p>Глава 2</p><p>Бесконечная незначительность и трансцендентность числа <emphasis>π</emphasis></p>

Лицо π было скрыто маской. Все понимали, что сорвать ее, оставшись при этом в живых, не сможет никто. Сквозь прорези маски пронзительно, безжалостно, холодно и загадочно смотрели глаза.

Бертран Рассел

Мы подробно, знак за знаком, проследили путь числа π в поисках трансцендентности. Линдеман завершил поиски и расставил все по местам. Теперь мы знаем, что π трансцендентно, его нельзя построить с помощью циркуля и линейки, поэтому задача о квадратуре круга не имеет решения.

Чтобы лучше понять значимость и важность π в мире математики, совершим небольшую экскурсию в неспокойный мир бесконечности. Это отдельная вселенная, очень обширная и запутанная, полная вопросов, лежащих между философией и реальным миром. Этот мир настолько необычен, что некоторыми его аспектами занимается высшая математика, в которой действия с бесконечностью предельно упрощаются. Мы рассмотрим эту область лишь поверхностно, особенно не углубляясь. Тем не менее обзор бесконечности в математике нетривиален, требует определенных усилий, а иногда просто скучен и повергает в уныние.

Предупредив читателя, мы начинаем нашу экскурсию в мир бесконечности с почти что абсурдного вопроса: «Что такое число?» Чтобы ответить на него, начнем с рассмотрения самого представления о числах.

Числа и множества

В основе практически всех основных понятий лежат множества — простые совокупности объектов, которые мы будем перечислять в фигурных скобках, разделяя запятыми. Например,

А = {а, Ь, с, d}

обозначает множество А, образованное символами а, Ь, с и d. Вместо букв могут использоваться животные, люди, музыкальные инструменты и так далее. Это не принципиально. Будем использовать наиболее простое определение, которое эксперты называют «наивным»: будем считать множество совокупностью объектов, называемых «элементами множества».

Множества могут соответствовать друг другу — так обычно говорят о множествах, между которыми установлено взаимно однозначное соответствие. Например, множества

{а, Ь, с} и {Наполеон, , автор этой книги}

соответствуют друг другу, так как между их элементами можно установить взаимно однозначное соответствие и при этом не останется лишних элементов. Напротив, множества

{а, Ь} и {Наполеон, , автор этой книги}

не могут соответствовать друг другу, поскольку в правом множестве всегда будет оставаться один элемент, которому не будет соответствовать никакой элемент левого множества. Из этого следует, что определение числа имеет отношение к множествам. Современное рекурсивное определение числа может выглядеть так:

1 = {0}

2 = {0, 1}

3 = {0, 1, 2}

4 = {0, 1, 2, 3}

5 = {0, 1, 2, 3, 4}

n = {0, 1, 2, 3, 4…. n — 1}

Говорят, что множество А имеет n элементов, если А соответствует n, иными словами, если между А и n имеется взаимно однозначное соответствие. Так, множество игроков футбольной команды на поле содержит 11 элементов, множество апостолов содержит 12 элементов. Согласно вышеприведенному перечню, множество 11 выглядит так:

11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Нет никаких сомнений в том, что между этим множеством и любым множеством футболистов на поле можно установить взаимно однозначное соответствие.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное