Оригинальное доказательство Линдемана основано на тех же примерах, которые за несколько лет до того использовал Шарль Эрмит (1822–1901) для доказательства трансцендентности числа
не может быть равной нулю (за исключением случая, когда все коэффициенты нулевые). Так как знаменитая формула Эйлера может быть записана в следующем виде:
она удовлетворяет условиям Линдемана (
Глава 2
Бесконечная незначительность и трансцендентность числа
Лицо π было скрыто маской. Все понимали, что сорвать ее, оставшись при этом в живых, не сможет никто. Сквозь прорези маски пронзительно, безжалостно, холодно и загадочно смотрели глаза.
Бертран Рассел
Мы подробно, знак за знаком, проследили путь числа π в поисках трансцендентности. Линдеман завершил поиски и расставил все по местам. Теперь мы знаем, что π трансцендентно, его нельзя построить с помощью циркуля и линейки, поэтому задача о квадратуре круга не имеет решения.
Чтобы лучше понять значимость и важность π в мире математики, совершим небольшую экскурсию в неспокойный мир бесконечности. Это отдельная вселенная, очень обширная и запутанная, полная вопросов, лежащих между философией и реальным миром. Этот мир настолько необычен, что некоторыми его аспектами занимается высшая математика, в которой действия с бесконечностью предельно упрощаются. Мы рассмотрим эту область лишь поверхностно, особенно не углубляясь. Тем не менее обзор бесконечности в математике нетривиален, требует определенных усилий, а иногда просто скучен и повергает в уныние.
Предупредив читателя, мы начинаем нашу экскурсию в мир бесконечности с почти что абсурдного вопроса: «Что такое число?» Чтобы ответить на него, начнем с рассмотрения самого представления о числах.
В основе практически всех основных понятий лежат множества — простые совокупности объектов, которые мы будем перечислять в фигурных скобках, разделяя запятыми. Например,
обозначает множество А, образованное символами
Множества могут соответствовать друг другу — так обычно говорят о множествах, между которыми установлено взаимно однозначное соответствие. Например, множества
{
соответствуют друг другу, так как между их элементами можно установить взаимно однозначное соответствие и при этом не останется лишних элементов. Напротив, множества
{
не могут соответствовать друг другу, поскольку в правом множестве всегда будет оставаться один элемент, которому не будет соответствовать никакой элемент левого множества. Из этого следует, что определение числа имеет отношение к множествам. Современное рекурсивное определение числа может выглядеть так:
1 = {0}
2 = {0, 1}
3 = {0, 1, 2}
4 = {0, 1, 2, 3}
5 = {0, 1, 2, 3, 4}
…
n = {0, 1, 2, 3, 4….
Говорят, что множество
11 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Нет никаких сомнений в том, что между этим множеством и любым множеством футболистов на поле можно установить взаимно однозначное соответствие.