Кроме того, сфотографированные Маринером пирамиды Элизиума на Марсе имеют четкую форму тетраэдров. И Карл Мунк, с которым мы встретимся в последующих главах, в своей книге
Наш следующий вопрос: “Как мы можем естественно представить превращения одной геометрической энергетической частоты в следующую?” Посредством умеренно сложного комплекса технологий, можно продемонстрировать, как каждая геометрическая форма будет естественно “вырастать” из предыдущей. Для начала: сфера в икосаэдре относительно очевидна — движение бесформенного Единства в геометрическую форму. Следовательно, не требуется делать никакое реальное моделирование. Превращение икосаэдра второй плотности в октаэдр третьей плотности будет четко смоделировано в томе 2. Чтобы превратить наш октаэдр в форму 4-го измерения, требуется расширить каждую грань до основного четырехгранного треугольника или тетраэдра. На нижеприведенном рисунке мы осмысливаем это так: мы собираемся поставить по тетраэдру отдельно на каждую грань.
Каждая грань октаэдра, имеющая форму равностороннего треугольника (все внутренние углы по 60 градусов и все стороны одинаковой длины), становится одной трехгранной вершиной звездного тетраэдра. Поскольку у октаэдра восемь граней, вам понадобится прибавить к его граням восемь тетраэдров. Чтобы оживить это приращение в виде комикса: могло бы показаться, что октаэдр вдруг расцветает как цветок; пока тетраэдры занимают каждый свое место, грани вдруг растут вверх. [Сравните приведенный здесь рисунок с гармонической таблицей. Это поможет визуализации. На рисунке верхняя форма справа демонстрирует, где должен был бы находиться один из восьми тетраэдров, если бы не был напрямую прикреплен к октаэдру.]
Чтобы перейти из четвертого измерения в пятое, вы можете посмотреть на рисунок и легко увидеть, что куб образовывается простым соединением точек на вершинах звездного тетраэдра. Чтобы перейти от пятимерного куба к шестимерному додекаэдру, требуется дальнейшее внешнее расширение, где каждая грань куба превращается в наклоненную внутрь “плоскую крышу”, и куб превращается в додекаэдр. Форма образующейся “крыши” легче всего видна в нижней четырехугольной области, в то время как квадратная область больше похоже на вид сверху.
Далее, если вы поставите точку в центре каждого пятиугольника додекаэдра и соедините все полученные точки, то будете иметь набор линий, образующих пятиугольную звезду, создающую форму икосаэдра — последнего главного узла перед возвращением к Сфере. Короче говоря, возвращаясь к изначальной таблице гармоник, мы можем видеть, что все движение представляет собой сферу, или Единство, расширяющееся в “семя” или фундаментальную форму икосаэдра. По своей форме эта структура позволяет появление всех других, содержащихся в ней форм (Лолор, 1982). Именно из-за аспекта семени икосаэдра Индусы ассоциировали его с мужским богом. Они воспользовались метафорой семени или “семени жизни”.
Мы обретаем понимание того, что формы, образующиеся энергетическими вибрациями, могут расти, во многом напоминая рост кристалла.
Кратко рассмотрим еще одно положение, являющееся источником смущения читателей этой книги, и в пересмотренном издании попытаемся разбить его на простые термины. Если вам все еще трудно понять, то напоминаем, что это весьма несущественное положение, необходимое для понимания физики. Чтобы Вселенная действительно была Одним, должен существовать уровень, где нет ни пространства, ни времени, где все пребывает в Здесь и Сейчас. Источники, такие как Сетх (через Джейн Робертс), говорят: на самом деле во Вселенной не “существует” ничего, включая сам эфир. В каждый и любой момент вся Вселенная сжимается и расширяется из единственной точки Единства.