Читаем Сдвиг Эпох полностью

Не существует прямого доказательства того, что члены секретных групп инспирировали политические нападки на работу Максвелла; но именно этого и следовало ожидать, основываясь на их системе верований, которую они поклялись защищать под страхом смерти. Еще один более очевидный пример: демонизация концепции “эфира”, используя в качестве “доказательства” результаты эксперимента Майкельсона-Морли. Мистик 19-го века мадам Блаватская предсказала, что эфир будет убран из обсуждения, и что “столпы науки с ним покончат”. Более подробно мы будем обсуждать это в томах 2 и 3. Даже сейчас предубеждение против эфира так сильно, что вас сразу же уволят, если вы попытаетесь поднять этот вопрос в научной дискуссии. Нас это не волнует, ибо время и доказательство залечат рану.

Как только мы принимаем существование жидкообразного эфира на разных уровнях плотности, где каждая плотность обладает своим качеством вибрации, мы сразу же осознаем, что в различных “чистых” вибрациях возникают определенные явные геометрические формы. Геометрия — единственный самый важный аспект поведения эфира в терминах его способности конструирования устойчивых структур, таких как кристаллы. Без геометрии материя была бы невозможна, ибо именно геометрия позволяет “пузырькам поля” собираться вместе в определенные организованные паттерны, образуя конкретные молекулы. В противном случае, самое большее, на что мы могли бы надеяться, — что сферы выстраивались бы полюс к полюсу или свободно плавали вокруг друг друга. А такое поведение недостаточно сложно для того, чтобы строить материю. Вершины геометрических форм обладают большей силой притягивать друг друга, чем другие области поверхности сферы (что мы будем обсуждать ниже). Это позволяет сферам организовываться в не случайные “матричные” паттерны.

Хотя бо льшую часть времени мы не можем видеть эти геометрии, за исключением кристаллических структур, микрокластеров и квазикристаллов (том 3), они создают ярко выраженные “напряжения” или зоны давления в эфире, которые способны оказывать огромное влияние на свое окружение. Подумайте о силе, содержащейся в водовороте, и вы увидите, что внутри себя жидкость может иметь области более сильных и более слабых сил. Таким образом, геометрические формы обладают как качествами жидкости, ибо формируются в жидкой среде, так и кристалла, ибо они явно геометричны. Д-р Гарольд Аспден называет их “жидкими кристаллами”. К концу тома 3 у нас будет полная физическая модель для демонстрации того, как эти образования спрятаны во всей физике — квантовой, биологической или космологической. Если вы думаете, что химия и квантовая физика совершенны в той форме, в какой они существуют сейчас, то будете очень удивлены обнаружить, как много проблем существует в современных моделях, и что предлагаемый нами проект решает каждую из этих проблем. В этом томе мы коснемся некоторых основ влияния этого геометрического паттернирования, включая “Глобальную Решетку” энергетических линий на Земле, непосредственно формирующую континенты.

Самое важное качество Платоновых Тел: каждая форма совершенно вписывается в сферу так, что все их внешние вершины точно сливаются с внешней поверхностью сферы. Все прямые линии, составляющие эти объекты, будут одинаковой длины, а все геометрические точки на сфере равноудалены от своих соседей. Именно этого и следовало ожидать в науке о вибрации. Платон и другие греческие философы также указывали на то, что в этих геометрических телах все угловые измерения одинаковы, и что каждая грань трехмерных объектов имеет одну и ту же форму. Хотя поначалу это может сбивать с толку, в действительности все работает очень хорошо. Когда мы смотрим на эту информацию, мы видим, что соревнуются всего пять основных форм. Эти пять форм следующие: октаэдр (восьмигранник), звездный тетраэдр (два четырехгранника, вставленные друг в друга), куб (шестигранник), додекаэдр (двенадцатигранник) и икосаэдр (двадцатигранник).

Чтобы понять, почему эти геометрические объекты образуют вибрирующую сферу жидкообразной энергии, следует кое-что знать о волновом движении. Если у нас есть простая двумерная волна, например, гитарная струна, то существуют три основных компонента, которые будут оставаться неизменными, если волна не возмущается. Это длина волны, частота и амплитуда. Длина волны — это насколько велика каждая часть волны, то есть, “наблюдаемое расстояние между двумя соседними гребнями волны”; в случае видимого света измеряется как линейная величина в ангстремах. Частота — количество гребней волны, которые проходят перед наблюдателем в каждую секунду; измеряется как число колебаний в секунду или в “герцах”. Амплитуда — насколько высока каждая волна, то есть, “величина волны, измеренная от нуля до пика”.

Перейти на страницу:

Похожие книги