During World War One, Germany was placed under blockade and suffered severe shortages of raw materials, in particular saltpetre, an essential ingredient in gunpowder and other explosives. The most important saltpetre deposits were in Chile and India; there were none at all in Germany. True, saltpetre could be replaced by ammonia, but that was expensive to produce as well. Luckily for the Germans, one of their fellow citizens, a Jewish chemist named Fritz Haber, had discovered in 1908 a process for producing ammonia literally out of thin air. When war broke out, the Germans used Haber’s discovery to commence industrial production of explosives using air as a raw material. Some scholars believe that if it hadn’t been for Haber’s discovery, Germany would have been forced to surrender long before November 1918.6 The discovery won Haber (who during the war also pioneered the use of poison gas in battle) a Nobel Prize in 1918. In chemistry, not in peace.
The Industrial Revolution yielded an unprecedented combination of cheap and abundant energy and cheap and abundant raw materials. The result was an explosion in human productivity. The explosion was felt first and foremost in agriculture. Usually, when we think of the Industrial Revolution, we think of an urban landscape of smoking chimneys, or the plight of exploited coal miners sweating in the bowels of the earth. Yet the Industrial Revolution was above all else the Second Agricultural Revolution.
During the last 200 years, industrial production methods became the mainstay of agriculture. Machines such as tractors began to undertake tasks that were previously performed by muscle power, or not performed at all. Fields and animals became vastly more productive thanks to artificial fertilisers, industrial insecticides and an entire arsenal of hormones and medications. Refrigerators, ships and aeroplanes have made it possible to store produce for months, and transport it quickly and cheaply to the other side of the world. Europeans began to dine on fresh Argentinian beef and Japanese sushi.
Even plants and animals were mechanised. Around the time that
Egg-laying hens, for example, have a complex world of behavioural needs and drives. They feel strong urges to scout their environment, forage and peck around, determine social hierarchies, build nests and groom themselves. But the egg industry often locks the hens inside tiny coops, and it is not uncommon for it to squeeze four hens to a cage, each given a floor space of about twenty-five by twenty-two centimetres. The hens receive sufficient food, but they are unable to claim a territory, build a nest or engage in other natural activities. Indeed, the cage is so small that hens are often unable even to flap their wings or stand fully erect.
Pigs are among the most intelligent and inquisitive of mammals, second perhaps only to the great apes. Yet industrialised pig farms routinely confine nursing sows inside such small crates that they are literally unable to turn around (not to mention walk or forage). The sows are kept in these crates day and night for four weeks after giving birth. Their offspring are then taken away to be fattened up and the sows are impregnated with the next litter of piglets.
Many dairy cows live almost all their allotted years inside a small enclosure; standing, sitting and sleeping in their own urine and excrement. They receive their measure of food, hormones and medications from one set of machines, and get milked every few hours by another set of machines. The cow in the middle is treated as little more than a mouth that takes in raw materials and an udder that produces a commodity. Treating living creatures possessing complex emotional worlds as if they were machines is likely to cause them not only physical discomfort, but also much social stress and psychological frustration.7