Метод, разработанный Гейзенбергом, не так уж отличался от описания электронных переходов и их вероятностей, которым занимался Эйнштейн при работе над прототипом лазера в 1916 году. На входе – один набор фотонов, на выходе – другой. Не трудно провести их измерение и наловчиться с неплохой точностью предсказывать, как один набор приводит к появлению другого. Можно проделать это с опереттой, а можно – с электронами. Что-то подобное как раз и предпринял Гейзенберг в своих гельголандских расчетах 1925 года. Он рассуждал так: сведем в единую таблицу ряд событий, которые
Так Гейзенберг добился того, чего не сумели достичь его старшие коллеги-физики, тоже занимавшиеся этой проблемой. Великое открытие, какие случаются раз в жизни, лежало перед ним на столе в виде разрозненных заметок. («Было почти три часа ночи… но я перевозбудился и никак не мог заснуть», – позже вспоминал он.) Взволнованный Гейзенберг пешком отправился на южную оконечность острова Гельголанд, вскарабкался на скалу, глядящую на просторы Северного моря, и (подобно Эйнштейну и его друзьям на одной вершине близ Берна 20 лет назад) стал смотреть, как поднимается над горизонтом солнце – торжественно и неуклонно. Строгая, четкая и точная причинность столетиями правила миром. Теперь же Гейзенберг, намеренно ограничившись лишь «внешними» измерениями (он полагал, что Эйнштейн поступал точно так же), заявил: наша задача вовсе не состоит в том, чтобы строить догадки о происходящем «внутри». Эта идея Гейзенберга произвела настоящий переворот в науке. Считается, что именно с нее началось развитие новой, квантовой механики.
Вернувшись в континентальную Германию, он всем рассказал о своем открытии. Он говорил: пока вы не думаете о подробностях происходящего внутри атома, можно делать удивительно точные прогнозы насчет света, испускаемого этим атомом. С XVII века, со времен великого Исаака Ньютона, вся наука строилась на предположении, что каждый наблюдаемый нами процесс можно (по крайней мере, в принципе) прояснить во всех подробностях. И вот теперь Гейзенберг утверждал: нет, это не обязательно так.
Макс Борн, некогда возглавлявший факультет, где учился Гейзенберг, во многом принял этот новый подход, поскольку результаты, полученные его бывшим студентом, отличались впечатляющей точностью. А вот Эйнштейн – нет. Однако он находился в дружеских отношениях со всем семейством Борнов, и ему следовало вести себя деликатно. В намеренно двусмысленных и обтекаемых выражениях он написал жене своего друга Макса: «От идей Гейзенберга – Борна у всех захватило дух. Они произвели на нас глубокое впечатление».
Эйнштейн прибег к такой двусмысленности еще и вот почему: хоть он и возражал против того метода, каким Гейзенберг словно бы намеревался отставить причинность в сторону, создатель теории относительности отлично знал – из-за своей косности ученые часто отвергают важнейшие открытия. Так, в 1895 году Вильгельм Рентген описал обнаруженные им странные лучи (позже их назовут в его честь рентгеновскими), и те физики, которые поначалу отказывались поверить Рентгену, вскоре вынуждены были признать свою неправоту. Конечно же, ко всем новооткрытым феноменам следовало подходить непредвзято и вдумчиво. К примеру, в 1903 году один известный французский физик описал столь же странное новое явление, которое назвал N-лучами. Не прошло и двух лет, как выяснилось, что эти «лучи» – следствие ошибки эксперимента, и теперь уже физикам, которые поспешили
Супруги Борн подозревали, что в своем туманном письме Эйнштейн проявляет любезность, и не более того. И Макс Борн попытался выведать, что же он на самом деле думает о результатах Вернера. Припертый к стенке, Эйнштейн был вынужден высказаться конкретнее: «Да, квантовая механика, разумеется, весьма впечатляет. Но какой-то внутренний голос шепчет мне, что пока это – штука не совсем настоящая». В разговоре с более близким другом Эйнштейн выразился резче: «Гейзенберг снес большое квантовое яйцо. Они в Гёттингене в это яйцо верят. А я – нет».