Он оказался перед лицом непростой дилеммы. Да, он любил свое уравнение за простоту и ясность. Приятно было думать, что Вселенная устроена согласно столь несложному и красивому закону. Уравнение позволяло делать замечательно четкие предсказания о происходящем в Солнечной системе (скажем, о том, как звездный свет будет отклоняться, проходя близ Солнца). Однако это же уравнение, судя по всему, предсказывало и то, что в гораздо более широких масштабах Вселенная как целое меняется: все звезды в космосе когда-нибудь или навсегда разлетятся, или сольются в единый сгусток. Но каждый уважаемый астроном скажет, что такая картина неверна, ибо все наблюдения показывали: Вселенная стабильна и никогда не меняется в размерах. Неужели общее мнение ведущих астрономов мира ошибочно?
Кто-то должен уступить, решил Эйнштейн. И если наблюдаемые факты касательно Вселенной не изменятся, то ему придется изменить свою теорию. Раз его уравнение 1915 года предсказывает, что Вселенная меняется, он должен исправить уравнение, чтобы оно не давало такого прогноза. При этом останется в силе все то, что оно говорит об эффектах меньшего масштаба – скажем, о том, что наше Солнце заставляет пространство прогибаться в достаточной степени, чтобы отклонять проходящий рядом свет от звезд. Но то, что говорилось о более крупномасштабных эффектах (о тех, которые характеризуют структуру Вселенной в целом), надлежит поправить. И вот в феврале 1917 года Эйнштейн написал в Берлин, в Прусскую академию наук: «Я пришел к выводу, что в гравитационные уравнения, которые я представлял ранее, следует внести поправки, дабы избежать этих фундаментальных затруднений…» Да, он хотел изменить свое изящное соотношение G = T. Но как это сделать?
Эйнштейн уже довольно долго размышлял над этой проблемой. В своем послании 1917 года он сообщил о единственной поправке, какую смог придумать. В исходное уравнение пришлось ввести еще один параметр, который как бы ослабил левую часть формулы (где описывается геометрия пространства), слегка скомпенсировав гравитационное воздействие (подобно тому, как Атлас сдерживал тяжесть небес, чтобы звезды не упали на землю). Эйнштейн обозначил этот новый параметр греческой буквой «лямбда» (Λ). Позже его назовут космологической постоянной, поскольку он представлял собой фиксированное число (константу), действующее на космическом уровне. И вместо прекрасного в своей простоте и симметричности G = T у него получилось прихрамывающее G – Λ = T.
Не станем вдаваться в подробности того, как Эйнштейн пришел к своей космологической постоянной. Упрощенно говоря, G представляет геометрию нашей Вселенной, и Вселенная так сильно искривлена, что этот параметр достаточно велик для того, чтобы заставить звезды летать – подобно громадным камням, падающим в пропасть. Но если слегка уменьшить эту силу, звезды не будут падать, они по-прежнему будут парить в пространстве более или менее неподвижно: почти все тогдашние астрономы полагали, что на самом деле звезды именно так себя всегда и ведут. Эйнштейн словно бы заново нарисовал эту пропасть, так что теперь она уже не зияла такой страшной глубиной, и камни больше не катились в нее очертя голову. Вот какое действие произвело добавление лямбды.
Ему она никогда не нравилась. «Этот параметр, – говорил он с берлинской кафедры, – необходим лишь для того, чтобы обеспечить возможность почти статичного распределения вещества, как того требуют низкие скорости, с которыми движутся звезды; такие скорости – установленный факт». Астрономы заверяли его, что все звезды, которые мы наблюдаем, движутся относительно друг друга сравнительно медленно и/или случайным образом, однако подобное «почти статичное распределение вещества» отнюдь не вытекает из его исходного уравнения. Лишь благодаря поправке, которую он скрепя сердце ввел в это соотношение, Эйнштейн мог добиться того, чтобы оно соответствовало наблюдениям – вернее, тому, что они
Может, лямбда и казалась необходимой для приведения эйнштейновского уравнения в соответствие с реальностью, но он чувствовал, что поправка «значительно ухудшила формальную красоту» его теории. Для Эйнштейна простота и красота уравнений служили основными признаками их справедливости. Он не верил, что какое-то божество или сила природы может, создав Вселенную согласно нескольким очень простым принципам, затем неуклюже добавить в них такие вот дополнительные поправки. В исходном G = T, выведенном в 1915 году, сквозил почерк Бога, наслаждающегося простотой своего творения. Эти два символа словно бы коренились в самой природе Вселенной: параметр G отражал суть того, как искривляется пространство, а параметр T – само существование Вещей в пространстве. Введенная же громоздкая лямбда служила лишь случайным дополнением к левой части уравнения, добавкой, призванной чуть ослабить силу тяготения (то есть сделать «пропасть» нашей Вселенной менее глубокой, а ее края менее отвесными, чтобы звезды – «камни» в нашем сравнении – не падали в нее).