Читаем С думой о Земле полностью

Есть еще одна особенность, характерная для корабельных командно-измерительных пунктов. Ограниченность палубного пространства создает сложную и трудноразрешимую проблему электромагнитной совместимости радиотехнических средств. Дело в том, что на палубе судна сосредоточено большое количество мощных передатчиков и высокочувствительных приемников, которые во многих случаях должны работать одновременно. В этих условиях передатчики, работающие на близких к радиоприему частотах, создают наиболее сильные помехи. Кроме того, мешают также их неосновные излучения. В создании помех существенный вес вносят и переизлучения от мачт, рубки, соседних антенн и других сооружений. Электромагнитная обстановка осложняется еще и тем, что антенны, сопровождая спутник, вращаются.

Каковы же пути борьбы с радиопомехами?

Наиболее простой, напрашивающийся сам собой, так называемый способ пространственного разнесения сигналов. Он предусматривает возможно большее удаление друг от друга передающих и приемных антенн. Его легко реализовать в наземных условиях. Но как это сделать в океане?

На судах приходится рассредоточивать антенны по палубам и мачтам. Приемные антенны стараются разместить, как правило, на носу, а передающие — на корме. Однако основным для ККИП следует считать частотный и временной способы разнесения электромагнитных колебаний. Сущность первого заключается в выборе различных частот для приемных и передающих радиосредств, а второго — в регламентации порядка и времени их включения.

При проектировании корабельных радиотехнических средств, имеющих мощные передатчики, одновременно с электромагнитной совместимостью была проведена экранировка помещений, введена предупреждающая сигнализация.

В океане, как на суше

Возможности корабельного пункта определяются прежде всего его оснащением. На судах водоизмещением от 17,5 до 45 тысяч тонн, таких, как «Космонавт Юрий Гагарин», «Космонавт Владимир Комаров», «Академик Сергей Королев», может быть размещен практически весь комплекс радиотехнических средств, характерных для стационарного командно-измерительного пункта. С их помощью можно передавать команды и программы для управления полетом, измерять параметры движения космического аппарата, принимать телеметрическую и научную информацию, вести радиотелефонные и радиотелеграфные переговоры с космонавтами, иначе говоря, полностью заменить наземный командно-измерительный пункт. Суда водоизмещением до 9 тысяч тонн даже при использовании усовершенствованных радиотехнических систем, более экономичных по габаритам и весу, пока не могут выполнить все функции стационарного командно-измерительного пункта. Поэтому они располагают меньшим составом оборудования и решают более узкий круг задач — прием из космоса телеметрической и научной информации, радиопереговоры с экипажами космических кораблей и орбитальных станций. К этой группе относятся так называемые малые научно-исследовательские суда АН СССР — «Космонавт Владислав Волков», «Космонавт Павел Беляев», «Космонавт Георгий Добровольский», «Космонавт Виктор Пацаев», «Кегостров» и другие.

Принцип работы при управлении полетом, траекторном и телеметрическом контроле, связи с космонавтами тот же, что и на стационарных измерительных пунктах. Поэтому здесь мы рассмотрим лишь вопросы специальные для судов «космического» флота.

Наиболее сложный и интересный из них — определение местоположения судов. Казалось бы, морская штурманская служба существует давно и особых проблем возникать здесь не должно. Однако задача местоопределения корабельного командно-измерительного пункта значительно сложнее задачи определения местоположения морского судна. И сложность ее заключается в разном подходе к точности определения координат.

Если штурманов морских судов интересует положение судна относительно окружающих наземных и морских ориентиров — портов, островов, проливов, отмелей, рифов и других местных ориентиров, то штурман корабельного командно-измерительного пункта должен вывести его в точку, координаты которой задаются в геоцентрической системе координат. А положение наземных ориентиров в геоцентрической системе координат не всегда известно достаточно точно, и может случиться так, что ошибки в их привязке измеряются сотнями метров.

Вот и получается, что в обычном навигационном смысле судно привязано абсолютно точно, а в геоцентрической системе координат, используемой в теории полета космических аппаратов, — недопустимо грубо. Зачем же тогда пользоваться этой системой координат и почему предъявляются повышенные требования к точности местоопределения судов «космического» флота?

Дело в том, что все наземные службы, обеспечивающие космический полет, должны понимать друг друга «с полуслова». Поэтому при наличии множества «собственных» самых различных систем координат все они имеют и общую по содержанию и названию — геоцентрическую экваториальную вращающуюся. Ее начало совпадает с центром Земли, одна из осей — с осью вращения нашей планеты, а две другие лежат в плоскости земного экватора.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука