// `to_owned` creates owned data from borrowed one
let mut farewell = "goodbye".to_owned();
// Capture 2 variables: `greeting` by reference and
// `farewell` by value.
let diary = || {
// `greeting` is by reference: requires `Fn`.
println!("I said {}.", greeting);
// Mutation forces `farewell` to be captured by
// mutable reference. Now requires `FnMut`.
farewell.push_str("!!!");
println!("Then I screamed {}.", farewell);
println!("Now I can sleep. zzzzz");
// Manually calling drop forces `farewell` to
// be captured by value. Now requires `FnOnce`.
mem::drop(farewell);
};
// Call the function which applies the closure.
apply(diary);
// `double` satisfies `apply_to_3`'s trait bound
let double = |x| 2 * x;
println!("3 doubled: {}", apply_to_3(double));
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
std::mem::drop, Fn, FnMut, Generics, where and FnOnce
Closures succinctly capture variables from enclosing scopes. Does this have any consequences? It surely does. Observe how using a closure as a function parameter requires generics, which is necessary because of how they are defined:
#![allow(unused)]
fn main() {
fn apply
F: FnOnce() {
f();
}
}
When a closure is defined, the compiler implicitly creates a new anonymous structure to store the captured variables inside, meanwhile implementing the functionality via one of the traits: Fn, FnMut, or FnOnce for this unknown type. This type is assigned to the variable which is stored until calling.
Since this new type is of unknown type, any usage in a function will require generics. However, an unbounded type parameter
// `F` must implement `Fn` for a closure which takes no
// inputs and returns nothing - exactly what is required
// for `print`.
fn apply
F: Fn() {
f();
}
fn main() {
let x = 7;
// Capture `x` into an anonymous type and implement
// `Fn` for it. Store it in `print`.
let print = || println!("{}", x);
apply(print);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה