Читаем Роман с Data Science. Как монетизировать большие данные полностью

Следующая вещь, с которой я столкнулся, – это точность цифр. Я много занимался анализом маркетинговой деятельности, в том числе маркетинговых акций. Моя задача заключалась в том, чтобы как можно более точно оценить их влияние на бизнес. Вообще реакция менеджеров на цифры разная – все радуются положительным результатам, не проверяя их; но когда видят отрицательные – сразу ищут ошибку. И скорее всего, «найдут». Видите ли, все метрики содержат ошибку. Вспомните лабораторные работы по физике в школе или институте, сколько мы мучились и считали погрешности. Системные, случайные… Сколько времени мы тогда тратили на то, чтобы подогнать результат под нужную закономерность?

В бизнесе и науке так делать нельзя, особенно если вы хотите быть хорошим аналитиком и не пользоваться вышеупомянутыми «сравнительно честными способами» повернуть цифры туда, куда нужно. Сейчас погрешность измерений веб-аналитики (системы измеряют посещаемость веб-сайтов) составляет около 5 %. Когда я еще работал в Ozon.ru, погрешность всей аналитической системы тоже была около 5 % (расхождение с данными бухгалтерии). У меня был серьезный случай – я обнаружил ошибку в коммерческой системе веб-аналитики Omniture Sitecatalyst (ныне Adobe Analytics): она не считала пользователей с браузером Opera. В результате погрешность измерений была очень большой – около 10 % всех совершенных заказов система, за которую мы платили более 100 тысяч долларов в год, безнадежно потеряла. С такой погрешностью ей тяжело было доверять – но, к счастью, когда я обнаружил ошибку системы и сообщил о ней в Omniture, их разработчики ее устранили.

При работе с погрешностями я вывел правило, которое называю Правилом штангенциркуля. Есть такой инструмент для измерения размеров деталей с точностью до десятых долей миллиметра. Но такая точность не нужна при измерении, например, размеров кирпича – это уже за пределами здравого смысла, достаточно линейки. Правило штангенциркуля я бы сформулировал так:

Погрешность есть в любых измерениях, этот факт нужно принять, а саму погрешность – зафиксировать и не считать ее ошибкой (в одной из следующих глав я расскажу, как ее мониторить).

Задача аналитика – в разумной мере уменьшить погрешность цифр, объяснить ее и принять как данность. Как правило, в погоне за сверхточностью система усложняется, становится тяжелой с точки зрения вычислений, а значит, и более дорогой – ведь цена изменений становится выше.

<p><strong>Принцип Парето</strong></p>

Итальянский экономист и социолог Вильфредо Парето в 1897 году, исследуя структуру доходов итальянских домохозяйств, выяснил, что 80 % процентов всех их доходов приходится на 20 % из них.

Универсальный принцип, названный в его честь, был предложен в 1951 году, и сейчас принцип Парето звучит так: «20 % усилий дают 80 % результата».

Опираясь на свой опыт, я бы так сформулировал его на языке данных:

• 20 % данных дают 80 % информации (data science);

• 20 % фич или переменных дают 80 % точности модели (machine learning);

• 20 % из числа успешных гипотез дают 80 % совокупного положительного эффекта (тестирование гипотез).

Я почти 20 лет работаю с данными и каждый день убеждаюсь в том, что эта закономерность работает. Это правило лентяя? Только на первый взгляд. Ведь чтобы понять, какие именно 20 % позволят добиться результата, нужно потратить 100 % усилий. Стив Джобс в интервью Business Week в 98-м году сказал: «Простое сделать труднее, чем сложное: вам придется усердно поработать, чтобы внести ясность в ваши мысли, и тогда станет понятно, как сделать проще. Но это стоит того: как только вы достигнете этого, вы сможете свернуть горы».

Приведу пример того, как применяется правило Парето в машинном обучении. Для проекта обычно готовится ряд фич (входных параметров модели), на которых будет тренироваться модель. Фич может получиться очень много. Если выводить такую модель в бой, она будет тяжелой, требовать для своего поддержания много строк программного кода. Для такой ситуации есть лайфхак – посчитать вклад каждой фичи (feature importance) в результирующую модель и выбросить из модели фичи с минимальным вкладом. Это прямое использование правила Парето – 20 % фич дают 80 % результата модели. В большинстве случаев лучше модель упростить, пожертвовав небольшой долей ее точности, при этом проект будет в разы меньше исходного. На практике можно экономить время, подсмотрев фичи в решениях какой-нибудь схожей задачи на kaggle.com. Взять оттуда самые сильные из них и реализовать в первой версии собственного проекта.

<p><strong>Можно ли принимать решения только на основе данных?</strong></p>
Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес