Читаем Роман с Data Science. Как монетизировать большие данные полностью

Она состоит из суммы произведений коэффициентов на значение соответствующей фичи и дополнительно свободного члена (intercept). Выглядит она как прямая в случае одной независимой переменной и как гиперплоскость в случае N фич. Когда происходит обучение линейной регрессии, то гиперплоскость строится таким образом, чтобы минимизировать расстояние от точек (из датасета) до нее, что является среднеквадратичным отклонением. Самый первый вопрос, который я задаю кандидатам на должность аналитика данных, звучит так: «У вас есть результат эксперимента, точки отмечены на плоскости с двумя осями. Кто-то провел линию, их аппроксимирующую. Как понять, оптимально ли построена прямая?» Это очень хороший вопрос на понимание сути линейной регрессии.

Если данные на входе линейной регрессии были нормализованы, то чем больше коэффициент у фичи, тем большее влияние на зависимую переменную она оказывает, а значит, и на результат. Положительный коэффициент – увеличение значения фичи увеличивает значение зависимой переменной (положительная корреляция). Отрицательная – это отрицательная корреляция или отрицательная линейная зависимость.

<p><strong>Логистическая регрессия</strong></p>

Это самая популярная модель решения задач бинарной (два класса) классификации.

Допустим, у нас есть задача – разделить два класса: крестики и нолики. Я их отметил на координатной сетке, по осям отложил значения фич X1 и X2 (рис. 8.5). Легко видеть, что между крестиками и ноликами можно провести прямую, которая их разделяет. Все, что выше прямой, – нолики, ниже – крестики.

Рис. 8.5. Разделяющая прямая в задаче классификации

Так работает логистическая регрессия – она ищет прямую или гиперплоскость, которая разделяет классы с минимальной ошибкой. Как результат она выдает вероятность принадлежности точки к классу. Чем ближе точка находится к разделяющей поверхности, тем менее модель уверена в своем выборе, вероятность будет приближаться к 0.5, чем дальше точка от поверхности – тем вероятность ближе к 0 или 1, в зависимости от класса. В задаче два класса, поэтому если вероятность принадлежности к одному классу равна 0.3, то ко второму 1–0.3 = 0.7. Для вычисления вероятности в логистической регрессии используется сигмоида (рис. 8.6).

Рис. 8.6. Сигмоида

В этом графике в t подставляется значение из обычной линейной формулы с коэффициентами, как у линейной регрессии. Сама формула является уравнением той разделяющей поверхности, о которой я писал выше.

По популярности это топовая модель как среди исследователей, которые любят ее за простоту и интерпретируемость (коэффициенты такие же, как у линейной регрессии), так и среди инженеров. На очень больших нагрузках, в отличие от других классификаторов, эта простая формула легко масштабируется. И когда вас догоняет в интернете баннерная реклама, скорее всего, за ней стоит логистическая регрессия, которая до недавнего времени использовалась, например, в компании Criteo, одной из самых больших ретаргетинговых компаний в мире [54].

<p><strong>Деревья решений</strong></p>

Деревья решения (decision tree) дышат в спину линейным методам по популярности. Это очень наглядный метод (рис. 8.8), который может использоваться для задач классификации и регрессии. Самые лучшие алгоритмы классификации (Catboost, XGboost, Random Forest) основываются на нем. Сам метод нелинейный и представляет собой правила «если…, то…». Само дерево состоит из внутренних узлов и листьев. Внутренние узлы – это условия на независимые переменные (правила). Листья – это уже ответ, в котором содержится вероятность принадлежности к тому или иному классу. Чтобы получить ответ, нужно идти от корня дерева, отвечая на вопросы. Цель – добраться до листа и определить нужный класс.

Дерево строится совсем по иным принципам, чем те, которые мы рассмотрели в линейных методах. Мои дети играют в игру «вопрос-ответ». Один человек загадывает слово, а другие игроки должны с помощью вопросов выяснить его. Допустимые ответы на вопрос только да/нет. Выиграет тот, кто меньшим числом вопросов угадает ответ. С деревом аналогично – начиная от корня дерева, правила строятся таким образом, чтобы за меньшее число шагов дойти до листа.

Рис. 8.7. Дерево решений

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес