Впервые идея искусственной нейронной сети возникла в конце 1940-х гг., когда был проведен ряд экспериментов. В течение долго времени они использовались для выявления закономерностей. Однако в последние годы был совершен ряд революционных открытий, которые привели к значительному увеличению производительности, особенно при использовании многоярусных нейронных сетей, построенных по технологии, которая получила название «углубленное обучение» (deep learning). Системы углубленного обучения уже применяются при распознавании речи в голосовом помощнике Siri компании Apple; ожидается, что их внедрение будет способствовать ускорению темпов развития во многих прикладных областях, предполагающих выявление и анализ закономерностей. Например, в 2011 г. ученые из Университета Лугано в Швейцарии спроектировали нейронную сеть со способностью к углубленному обучению, которая смогла правильно идентифицировать свыше 99 % изображений из обширной базы данных о дорожных знаках — с таким уровнем точности не смог сравниться никто из соревновавшихся с системой людей. Исследователи из Facebook также разработали экспериментальную систему, состоящую из девяти уровней искусственных нейронов, которая может определить, что на двух фотографиях изображен один и тот же человек, в 97,25 % случаев, несмотря на условия освещения и ориентацию лица. Для сравнения: участвовавшие в эксперименте люди давали правильный ответ в 97,53 % случаев{125}.
Один из ведущих экспертов в этой области Джеффри Хинтон из Университета Торонто отмечает, что технология углубленного обучения «отлично поддается масштабированию. Просто сделайте ее больше и быстрее, и она будет лучше работать»{126}. Другими словами, даже если оставить в стороне совершенствование принципов работы таких сетей, можно с уверенность утверждать, что системы машинного обучения на основе сетей со способностью к углубленному обучению ждет этап стремительного роста — этот простой вывод следует из закона Мура.
По мере того как работодатели — и в особенности большие корпорации — все больше и больше усиливают контроль над режимом работы и социальными связями своих сотрудников, постоянно расширяя круг отслеживаемых показателей и параметров, большие данные и используемые для их обработки сложные алгоритмы начинают напрямую влиять на условия работы и карьерный рост сотрудников. Так называемая «аналитика трудовых ресурсов» (people analytics) играет все большую роль при принятии компаниями решений о найме, увольнении, оценке результативности и повышении сотрудников. Объем собираемых данных о конкретных людях и о выполняемой ими работе поражает воображение. Некоторые компании контролируют каждое нажатие клавиши каждым сотрудником. Сообщения электронной почты, расшифровки телефонных разговоров, поисковые запросы, обращение к базам данным, доступ к файлам, нахождение на территории работодателя — все эти, а также другие данные самых разных видов, точное количество которых даже трудно определить, подлежат сбору и анализу (в одних случаях с согласия самих сотрудников, а в других — без их ведома){127}. Разумеется, изначально целью сбора и анализа всех этих данных являются повышение эффективности управления и оценка результатов работы сотрудников. Но в определенный момент эти данные могут быть использованы совсем для других целей: например, для разработки ПО, автоматизирующего большую часть выполняемой работы.
Если говорить о последствиях революции в области больших данных для будущего профессий, связанных с умственным трудом, вероятно, стоит выделить два самых главных. Во-первых, во многих случаях собранных данных может оказаться достаточно для автоматизации конкретных задач и даже целых видов профессиональной деятельности. Подобно тому, как человек может научиться новой профессии, изучив опыт предшественников и опробовав его на практике при решении конкретных задач, современные сложные алгоритмы, по сути, способны проделать то же самое и полностью заменить человека. Чтобы убедиться в этом, достаточно вспомнить, что в ноябре 2013 г. компания Google подала заявку на регистрацию патента, описывающего систему, предназначенную для автоматического создания персонализированных сообщений электронной почты и ответов в социальных сетях{128}. Принцип работы системы таков: сначала она анализирует существующие письма и посты в социальных сетях определенного человека. Основываясь на полученных знаниях, она затем автоматически пишет ответы на новые сообщения электронной почты, сообщения в Twitter и посты в блоге, используя при этом характерные для данного человека индивидуальный стиль и манеру письма. Легко представить, как такая система может быть использована в будущем для автоматизации существенной части повседневного общения.