Читаем Риски цифровизации: виды, характеристика, уголовно-правовая оценка полностью

Задача регрессии – определение прогнозного числового значения решает такие прикладные задачи как прогнозирования спроса (дает количественную оценку спроса на тот или иной товар или вид товара), прогнозирования доходности акций по совокупности предоставляемой информации о деятельности компании, конкурентов, рыночной конъюнктуре, погодных и политических условиях и т. д., изучение структуры и постатейных размеров издержек производства на основе данных прошлых периодов и изменений, что позволяет прогнозировать регулярные расходы, проведение макроэкономических расчетов, в которых учитывается большое количество факторов, прогнозирование даты возврата кредита.

Задача ранжирования ставит целью сортировку объектов по значениям некоего характеризующего их показателя. Выбор показателя для ранжирования система определяет автоматически. В некоторых случаях задача ранжирования решается без выделения конкретного показателя за счет последовательно определения «соседей». Задача ранжирования применяется в информационном поиске, например, при сортировке в поисковых системах результатов поиска по «релевантности» – условному значению, определенному системой; в рекомендательных системах (в частности, на основе ранее прослушанных композиций предоставляется совет о том, какую песню или стиль система рекомендовала бы прослушать в порядке убывания рекомендательного индекса).

Задача прогнозирования ставится с целью спрогнозировать свойства объекта на основе данных за прошлые периоды. На примере желания снять наличные денежные средства в банкомате задача прогнозирования позволяет определить время и объем спроса на наличные денежные средства в банкоматах, установить необходимую численность персонала для обработки обращений клиентов во время штатной и пиковой нагрузки, спрогнозировать качество продукции по данным о производственном процессе, качестве исходного материала и квалификации персонала.

Обучение без учителя – в этой методологии система ИИ должна быть способна не просто отнести объект к той или иной группе, а без дополнительной информации самостоятельно выделить такие группы и затем определять принадлежность к ним объектов. По методологии обучения без учителя решаются задачи кластеризации, ассоциативных правил, фильтрации выбросов, сокращения размерности, заполнения пропущенных значений и др.

Задача кластеризации заключается в том, чтобы сгруппировать объекты в кластеры, представляющие собой сравнительно однородные группы объектов. К задаче кластеризации сводятся:

– анализ социальных сетей в разных сферах жизни общества для проведения исследований;

– оценка политических предпочтений сегментов аудитории в разных регионах, социальных и демографических группах;

– прогнозирование политической активности и акций на основе выявления поведенческих паттернов;

– агитация, т. е. распространение информации о кандидатах, данные о которых гражданин еще не рассматривал, но разделяет ценности партии кандидата;

– определение центров формирования общественного мнения;

– выбор популярных личностей среди лояльных к бренду людей в целях повысить эффективность кампаний при помощи информационных вирусных технологий, побуждающих распространять сведения о продуктах и компании саму аудиторию, которой она предназначена;

– поиск подходящих кандидатов в сотрудники компании по данным резюме и историй успеха сотрудников, которые уже плодотворно работают в компании;

– подбор сотрудников для какого-либо проекта;

– повышение эффективности командообразования на основе подтвержденных личных и профессиональных качеств;

– фокусировка рекламных кампаний на конкретном сегменте целевой аудитории;

– выявление латентных, не выражаемых явно потребностей покупателей, которые не ищут товар в интернете и не обращаются в магазины, но в общедоступных сообщениях (постах), группах, в которых состоят эти пользователи, оставляют информацию о своих намерениях или предпочтениях;

– определение кластеров коррумпированности – связей бизнеса и представителей власти.

Задача поиска ассоциативных правил – определение часто встречающихся наборов объектов в большом множестве таких наборов. Прикладные задачи, решаемые установлением ассоциативных правил:

– изучение событий, выявление причинно-следственных связей в поведении поставщиков, покупателей, сотрудников, инвесторов, конкурентов и иных лиц, оказывающих или могущих оказать влияние на компанию;

– анализ покупательской корзины – определение сочетаний товаров, пользующихся стабильным спросом, в целях оптимизировать поиск наборов покупателями;

– стимулирование спроса за счет формирования дополнительных предложений, проведения эффективных маркетинговых акций, продвигающих среди аудитории дополнительные товары.

Задача фильтрации выбросов – обнаружение в обучающей выборке небольшого числа нетипичных объектов. К задаче сводятся проблемы

– обнаружение мошенничества, т. е. выявление аномальных финансовых показателей по выручке или объему продаж, что помогает обнаружить факт кражи денежных средств или передачу информации конкурентам;

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии