Электроны, не имеющие пары, остроумно названные холостыми электронами, стремятся, как только представится такая возможность, объединиться с электронами другого атома и образовать пару. Действительно, расчеты показывают, что в большинстве случаев сближение двух атомов приводит к образованию молекулы, в которой по крайней мере некоторые из холостых электронов этих двух атомов образуют пары. Образование таких пар и оказывается причиной молекулярной связи между двумя атомами. Очевидно, что это объяснение можно обобщить на случай молекул, содержащих более двух атомов.
Представление о том, что образование молекул происходит благодаря формированию электронных пар с противоположно направленными векторами спинов, позволяет нам дать объяснение понятию валентности, играющему фундаментальную роль в химии. Вообще можно сказать, что атом, содержащий в основном состоянии некоторое число
Таким образом, валентность данного атома или по крайней мере максимальная его валентность равна
В то время как это новое основание теории валентности кажется вполне несомненным, детальное объяснение различных фактов химии, связанных с этой теорией (многократная или направленная валентность, стереохимия, свободные связи и т д.), остается еще трудной задачей. Решением ее уже начали заниматься серьезно, однако такая математическая химия оказывается сложной наукой, и многое еще предстоит сделать, чтобы довести ее до конца. За исключением простого случая молекулы водорода, точный расчет собственных значений и собственных функций невозможен и приходится ограничиваться вычислением собственных значений и классификацией их в соответствии со свойствами симметрии отвечающих им волновых функций, выражения для которых остаются неизвестными. Для этого приходится обращаться к весьма общим методам, основанным на теории групп. Эта теория пока еще мало известна физикам, но она оказывается незаменимой в этом разделе волновой механики. Кроме того, мы с ее помощью очень быстрым и красивым путем приходим к прекрасным весьма общим результатам. Однако, поскольку физики-теоретики, умеющие обращаться с этим сложным методом, за недостатком времени не всегда занимаются изучением даже основных многочисленных и сложных химических фактов, для успешного завершения уже начавшей развиваться теории необходимо тесное сотрудничество между физиками и химиками. Что же касается нынешнего состояния науки о квантах, то во всяком случае одним из славных успехов новой механики стало объяснение некоторых важнейших законов химии.
4. Квантовая статистика
Методы классической статистики Больцмана и Гиббса, успех которых в макроскопической физике известен, должны были претерпеть изменения в связи с развитием новой механики. Мы не можем здесь вдаваться в детали того, как видоизменились с введением кванта действия сами основы статистической механики. Рассмотрим лишь случай идеального газа с точки зрения представлений волновой механики. В идеальном газе атомы все время, не считая моментов соударений, находятся в состоянии прямолинейного равномерного движения. В классической статистике эти состояния движения образуют непрерывные наборы, ибо все значения и направления скоростей одинаково возможны. Методы Больцмана и Гиббса состоят по существу в подсчете возможных распределений атомов газа между состояниями движения с данной энергией и нахождении наиболее вероятного из них.
Хотя квант действия был введен, как и в волновой механике, при сопоставлении распространяющейся волны с движущимся атомом, ситуация здесь несколько иная, ибо в случае газа, заключенного в сосуд определенного размера, физически возможны только стационарные волны, находящиеся в резонансе с размерами сосуда (в согласии с принципами квантования в новой механике). Поэтому сначала необходимо подсчитать число этих стационарных соединений, затем рассчитать возможное распределение атомов по этим состояниям с заданной полной энергией.