Читаем Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики полностью

Построение пат-анализа для точного определения пути действий представляет собой довольно сложную задачу. Клиент может обратиться в банк в любое время и по любому каналу, включая колл-центр, филиал банка, чат в режиме онлайн или электронную почту. Банк должен знать, что именно уже произошло, чтобы предпринять правильное действие. Создание операционно-аналитического процесса требует обновления рекомендуемых действий по отношению к каждому клиенту после любого с ним контакта. Например, после того как клиент запросил об отмене комиссии и было принято решение об одобрении или отклонении запроса, эта новая информация должна быть немедленно включена в повторное вычисление правильной реакции во время следующего взаимодействия с клиентом. Отсутствие операционно-аналитического процесса в этом случае может привести к проблемам. Давайте посмотрим почему.

Легко опоздать навсегда

Операционная аналитика позволяет организации принимать наилучшее решение в любой момент времени. Использование же для аналитики данных, которые устарели всего лишь на несколько минут, может привести к неблагоприятным, а то и глубоко ошибочным решениям.

Например, я обращаюсь с просьбой об отмене комиссии в банк, который использует пакетную обработку данных только раз в сутки. Итак, банк получает мой запрос по электронной почте и отказывает мне. Его аналитики определяют, что в моем случае отказ не увеличит риска закрытия счета, и поэтому рекомендуют отклонить мой следующий запрос на отмену комиссии. Эта рекомендация загружается в систему и готова для использования на следующий день.

Назавтра я из машины снова звоню в банк с той же просьбой. Моя просьба отклоняется, как и было запланировано. Но отказ раздражает меня настолько, что я решаю зайти в филиал банка, мимо которого сейчас проезжаю, и лично поговорить с менеджером. Вот где начинаются проблемы. Поскольку обработка данных производится только вечером, то ни руководитель филиала, ни система не знают, что я только что звонил в банк и снова получил отказ. Рекомендация об отказе по-прежнему действует. Только вечером аналитики определят, что филиал должен был удовлетворить мой запрос, чтобы сохранить меня как клиента. Последнее взаимодействие существенно увеличило риск закрытия мной своего счета, однако руководитель филиала не знал об этом, поскольку его не снабдили аналитикой. Это классический пример операционного применения традиционной аналитики, и легко увидеть, почему такой подход может давать сбои.

При использовании же операционной аналитики система обновила бы данные, отразив мой последний звонок, а затем с учетом обновления немедленно выработала бы рекомендации удовлетворить просьбу, и, когда я входил в филиал, его руководитель уже был бы готов сообщить мне об отмене комиссии, благодаря чему я и дальше останусь с этим банком. Если еще несколько минут назад действовала рекомендация об отказе, то мой звонок в клиентскую службу полностью изменил бы представление об адекватной реакции. Ради своего преуспевания банк должен быть способным собирать все данные о взаимодействиях со мной в текущем режиме, а затем после каждого такого взаимодействия запускать аналитический процесс, чтобы правильно совершать свои дальнейшие шаги. Именно так работает операционная аналитика в эпоху Аналитики 3.0. Мой друг Джеймс Тейлор, генеральный директор компании Decision Management Solutions и автор книги «Системы, управляющие принятием решений: Практическое руководство по использованию бизнес-правил и прогностической аналитики» (Decision Management Systems: A Practical Guide to Using Business Rules and Predictive Analytics, 2011), много писал об операционной аналитике. Вот его мнение: «Организации, которые хотят процветать, а не просто выживать, должны преобразовать себя сверху донизу. Высокое качество операционных действий стало обязательным, а путь к такому качеству пролегает через аналитику. В планах каждого руководителя должен значиться переход к принятию каждого решения на основе аналитики и внедрению лучших решений во все операционные процессы».

<p>Как аналитика меняет бизнес</p>

Несмотря на все более широкое распространение аналитики, многие руководители не осознают, насколько фундаментально она меняет бизнес-модели. В этом разделе мы рассмотрим несколько важных для понимания концепций и трендов. Возможно, вашей организации потребуется более масштабно и без боязни рассмотреть, каким образом аналитика может изменить ваше будущее.

<p>Аналитика как цель, а не побочный продукт</p>
Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес