Читаем Решаем задачи Python полностью

1. Создаем пустой стек.

2. Итерируемся по каждому символу в выражении.

3. Если символ – число, помещаем его в стек.

4. Если символ – оператор, извлекаем из стека нужное количество операндов, выполняем операцию и помещаем результат обратно в стек.

5. После завершения итерации, в стеке должен остаться только один элемент – результат вычислений.

Применяя этот алгоритм к нашему выражению, мы получим:

1. Помещаем 5 в стек.

2. Помещаем 3 в стек.

3. Встречаем оператор "+", извлекаем из стека 3 и 5, выполняем операцию сложения и помещаем результат (8) обратно в стек.

4. Помещаем 8 в стек.

5. Помещаем 4 в стек.

6. Встречаем оператор "*", извлекаем из стека 4 и 8, выполняем операцию умножения и помещаем результат (32) обратно в стек.

7. Помещаем 32 в стек.

8. Встречаем оператор "/", извлекаем из стека 32 и 4, выполняем операцию деления и помещаем результат (8) обратно в стек.

После завершения итераций, в стеке остается только один элемент – результат вычислений, который равен 8.

Давайте напишем код для вычисления выражения в обратной польской записи:

```python

def evaluate_reverse_polish_notation(expression):

stack = []

operators = {'+': lambda x, y: x + y,

'-': lambda x, y: x – y,

'*': lambda x, y: x * y,

'/': lambda x, y: x / y}

for token in expression.split:

if token.isdigit:

stack.append(int(token))

elif token in operators:

operand2 = stack.pop

operand1 = stack.pop

result = operators[token](operand1, operand2)

stack.append(result)

return stack[0]

# Пример использования:

expression = "5 3 + 8 * 4 /"

result = evaluate_reverse_polish_notation(expression)

print("Результат вычислений:", result)

```

Этот код работает аналогично предыдущему, но мы добавил функцию `evaluate_reverse_polish_notation`, которая принимает строку в обратной польской записи и возвращает результат вычислений. Каждый токен выражения разделяется пробелами при помощи метода `split`, чтобы создать список токенов. Затем итерируется по этому списку. Если текущий токен является числом, он добавляется в стек. Если текущий токен – оператор, извлекаются два операнда из стека, выполняется операция и результат помещается обратно в стек. После завершения итераций в стеке остается только один элемент – результат вычислений, который возвращается из функции.

8. Задача о сортировке: Реализовать свой алгоритм сортировки и сравнить его производительность с встроенной функцией сортировки Python.

Идея решения:

Для реализации собственного алгоритма сортировки, мы можем использовать один из классических алгоритмов, таких как сортировка пузырьком, сортировка вставками, сортировка выбором или быстрая сортировка. Давайте выберем быструю сортировку (Quick Sort) из-за ее высокой производительности в среднем случае.

Идея быстрой сортировки заключается в следующем:

1. Выбирается опорный элемент из массива.

2. Массив разделяется на две подгруппы: одна содержит элементы, меньшие опорного, а другая – большие.

3. Рекурсивно применяется алгоритм к каждой подгруппе.

Для сравнения производительности нашего алгоритма сортировки с встроенной функцией сортировки Python (например, `sorted`), мы можем измерить время выполнения каждого метода на одних и тех же данных.

Код:

```python

import time

import random

def quick_sort(arr):

if len(arr) <= 1:

return arr

pivot = arr[len(arr) // 2]

left = [x for x in arr if x < pivot]

middle = [x for x in arr if x == pivot]

right = [x for x in arr if x > pivot]

return quick_sort(left) + middle + quick_sort(right)

# Функция для замера времени выполнения

def measure_time(sort_function, arr):

start_time = time.time

sorted_arr = sort_function(arr)

end_time = time.time

return sorted_arr, end_time – start_time

# Генерация случайного списка для сортировки

arr = [random.randint(0, 1000) for _ in range(1000)]

# Сравнение производительности с собственной и встроенной сортировкой

sorted_arr_custom, time_custom = measure_time(quick_sort, arr)

sorted_arr_builtin, time_builtin = measure_time(sorted, arr)

print("Время выполнения собственной сортировки:", time_custom)

print("Время выполнения встроенной сортировки:", time_builtin)

```

Объяснения к коду:

– `quick_sort`: Это наша реализация алгоритма быстрой сортировки. Он разбивает массив на подмассивы вокруг опорного элемента, рекурсивно сортируя каждую подгруппу, а затем объединяет их в один отсортированный массив.

– `measure_time`: Это функция, которая принимает на вход функцию сортировки и список для сортировки, замеряет время выполнения этой функции над списком и возвращает отсортированный список и время выполнения.

– Мы генерируем случайный список `arr` для сортировки.

– Затем мы вызываем `measure_time` для нашей собственной реализации быстрой сортировки и для встроенной функции сортировки Python (`sorted`).

– Наконец, мы выводим время выполнения каждой из функций сортировки для сравнения.

9. Задача о рекурсии: Реализовать алгоритм бинарного поиска с использованием рекурсии.
Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии