Читаем Репортаж с ничейной земли. Рассказы об информации полностью

Итак, для создания самой простой азбуки приходится изменять или длительность сигналов, или их силу (уровень), или их частоту. Но еще чаще приходится иметь дело с такими сигналами, у которых все изменяется одновременно. Например, при передаче музыки. Звук оркестра включает в себя огромное множество различных сигналов, имеющих разную длительность, громкость и частоту. А наша речь? Ведь это тоже набор звуков. И все они опять-таки отличаются друг от друга по частоте, длительности и силе. Вот и пришла мысль инженерам и математикам, создателям улицы Необычных Понятий, изображать различные сообщения в таком виде, чтобы все эти величины можно было сравнивать между собой.

Спичечная коробка имеет ширину, высоту и длину. И сигнал стал похожим на спичечную коробку: «длина» его зависит от длительности, «высота» - от пределов изменения его силы (уровня), а «ширина» - от диапазона содержащихся в нем частот.

Сообщение о прогнозе погоды гораздо короче газетной передовицы. Значит, сигнал, содержащий сводку погоды, обладает меньшей «длиной».

«Высота» упакованного сообщения определяется пределами изменения уровня. Так, например, громкость звучания симфонического оркестра изменяется в больших пределах, чем голос певца. Поэтому «симфония в упаковке» имеет большую высоту.

«Ширина» звукового сигнала определяется богатством окраски звука, зависящим от количества содержащихся в нем частот. Ударяя по одной клавише пианино, вы получите звук одной частоты. Аккорд на пяти клавишах дает 5 различных частот. И в звуке оркестра, рожденного одновременным звучанием множества инструментов, содержится целый спектр разнообразных частот.

Итак, становится ясным, почему всякий сигнал обладает определенным объемом.

Мы уже не будем выглядеть провинциалами в Новом Городе и можем смело продолжать путь по улице Необычных Понятий, где сигналы имеют разный объем. А впрочем... Кажется, мы слишком поторопились. Ведь мы условились не делать ни шагу, прежде чем не найдем ответа на каждый новый вопрос. А вопрос остался пока нерешенным: ведь мы так и не поняли, почему даже в Новом Городе наряду с телефоном и телевизором до сих пор существует и телеграф.

Чтобы ответить на этот вопрос, давайте представим себе, каким объемом обладают телевизионный и телеграфный сигналы.

Известно, что рабочий диапазон частот, используемых в телевидении, превышает диапазон частот телеграфии в десятки тысяч раз. Кроме того, уровень телевизионного сигнала также колеблется в широких пределах - ведь яркость луча должна меняться от черного до белого свечения. А телеграф обходится всего двумя уровнями: отсутствие сигнала во время паузы или присутствие при передаче точки и тире. Чтобы сравнить эти способы передачи, инженеры связи учли «ширину», «высоту» и «длину» каждого из сигналов и подсчитали, какой объем занимает один и тот же текст. Объем телевизионного сигнала оказался больше почти в 60 раз.

Как объяснить такое различие? Ведь получатель этого «груза» прочтет на ленте и на экране одни и те же слова. А объем получается разный, потому что в одном случае груз «транспортировался» по телеграфу, а в другом - через телевизионный канал.

Работник транспорта, очевидно, развел бы руками: выходит, один и тот же груз будет обладать в вагоне одним объемом, а в самолете - другим? И разница получается весьма ощутимой: для отправки одного и того же словесного груза пришлось бы поднять в воздух 60 самолетов, вместо того чтобы отправить один вагон!

Здесь проявляются необычные свойства нашего «груза». Все дело в том, в какие сигналы мы превращаем текст. Можно превратить слова в три простейших сигнала: пауза, точка, тире. А можно сделать так, чтобы те же слова были видны на экране так же четко, как на страницах книг. Но передача изображений - дело сложное и дорогостоящее: чтобы они были достаточно четкими, надо заставить луч с огромной скоростью бегать по строчкам экрана, и чем больше букв умещается на этом экране, тем чаще меняется яркость луча, тем шире будет диапазон рабочих частот. Поэтому наш «груз» оказался в десятки тысяч раз «шире», когда мы направили его в телевизионный канал.

Вот теперь становится ясным, почему телевидение не может вытеснить телеграф. Конечно, телевизор может дать значительный выигрыш в скорости передачи текста. Зато теперь мы знаем, какой ценой достигается эта скорость: 60 самолетов заменяют один вагон! И было бы ошибкой думать, что в данном случае «самолет» (то есть телевизионный сигнал) достигнет цели раньше «вагона» - и в том и в другом случае несущие информацию сигналы любое расстояние преодолевают практически мгновенно. Скорость сигналов в проводе или эфире так велика, что за 1 секунду сигнал успеет обежать земной шар по экватору почти 8 раз. Поэтому, рассматривая вопрос о скорости передачи сообщений, теория информации не учитывает, сколько времени «груз» находился в дороге: скорость передачи текста определяется тем временем, которое приходится затратить на «погрузку» и «разгрузку» передаваемого словесного груза.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное

Все жанры