Читаем Репортаж с ничейной земли. Рассказы об информации полностью

Одно сообщение идет по трем каналам связи. Каждый канал состоит из приемника и передатчика, работающих в определенном диапазоне частот. Если в этот диапазон попадает помеха, сообщение будет иметь искаженный характер; например, передавалось число 100, но в момент передачи третьего знака возникла помеха, и получилось число 101. Подобных случайностей может быть сколько угодно - сообщение может совершенно утратить свой смысл. Но есть два запасных канала. Они настроены на другие частоты: помеха, попавшая в один из каналов, не опасна для двух других. Поэтому по двум каналам пришло сообщение 100, а по одному - 101. Чему же верить? Решить несложно: можно почти с полной уверенностью утверждать, что передавалось сообщение 100.

Но слишком уж дорого обходится эта уверенность: должны непрерывно работать все 3 канала, хотя в принципе мог бы справляться один. Ну что ж, давайте попробуем обходиться одним каналом. А для того чтобы не бояться случайной помехи, будем передавать сообщение три раза подряд. А отличать истинное от ложного мы поручим специальному автомату. Принцип действия его очень прост.

Пусть число 01001 передается подряд три раза, причем каждая из передач сопровождается помехой, дающей ложный знак 1 вместо одного из нулей. Вот эти случаи:

Истинное сообщение. .. .. .. .. .. .. .. .. .. .. .. .. . .

01001

Ложное сообщение первое. .. .. .. .. .. .. .. .. .. .. .. . .

11001

Ложное сообщение второе. .. .. .. .. .. .. .. .. .. .. .. . .

01101

Ложное сообщение третье. .. .. .. .. .. .. .. .. .. .. .. . .

01011

Число, полученное в результате сравнения. .. .. .. .. .. .. .. .

01001

Каждый полученный знак поступает в ячейку памяти. Для того чтобы в этой ячейке накопился знак 1, необходимо, чтобы сообщение 1 повторилось не менее трех раз подряд. Создать такую ячейку нетрудно.

Подключим конденсатор к сетке радиолампы, и пусть каждый импульс (то есть сигнал 1) несет ему «порцию» заряда. Трех таких «порций» должно быть достаточно для того, чтобы лампа могла отпереться. Когда она отперта, она «помнит» знак 1.

Взгляните теперь на таблицу: три раза подряд сигнал 1 повторился при передаче 2-го и 5-го знаков.

Значит, только 2-я и 5-я ячейки будут отперты, остальные будут «помнить» знак 0. А все пять ячеек передадут истинное сообщение: число 01001.

Это простое устройство делает сложное дело: извлекает истинное сообщение из трех ложных. Между прочим, так же работает следователь, когда, пользуясь ложными показаниями трех соучастников, он восстанавливает истинную картину, сравнив показания между собой.

И все же, как ни остроумно это устройство, оно так же невыгодно, как и система из трех каналов. Арифметика тут довольно простая: каждое сообщение повторялось три раза, значит в три раза уменьшилось количество информации, проходящей через данный канал. Увеличился лишь объем ее упаковки. Как же создать надежную упаковку, не загружая канал? Вот тут и приходят на помощь те специальные коды, которые имеет в виду Шеннон.

К обычным обозначениям двоичных чисел добавляется еще один знак.

Сообщения в

двоичном коде

Добавочный

знак

Сообщения с

добавочным знаком

00

0

000

01

1

011

10

1

101

11

0

110

В одних случаях добавляется 0, в других - 1. В результате в любом сообщении (см. 3-ю колонку) будет содержаться четное число единиц.

В какой бы момент ни появилась теперь помеха, она не сможет создать ложного числа. Она может превратить сообщение 101 в 111 или ООО в 100, но ни одна из этих ложных комбинаций не содержится в нашей таблице, потому что помеха, добавив знак 1, создала нечетное число единиц. Значит, приняв такое сообщение, мы сразу обнаружим, что оно содержит ошибку, которую породил посторонний сигнал.

Однако это лишь одна сторона вопроса. Ведь, обнаружив ложное число 111, мы еще не можем установить истину, так как в этом случае могло передаваться и 011, и 110, и 101. Оказывается, можно создать и такие коды, которые способны исправить самих себя. Этот код выглядит так:

Передаваемое

число

Обозначение

кодом

1

00 000

2

01 110

3

10 101

4

11 011

Код построен таким образом, что любые две комбинации отличаются друг от друга не менее чем тремя знаками (например, у 10 101 и 11 011 отличаются 2-й, 3-й и 4-й знаки). Пусть пришло сообщение: 10 111. Истинно оно или ложно? Автомат начинает «оценивать» этот сигнал. В его памяти хранятся все истинные комбинации:

00

000

(I)

01

110

(II)

10

101

(III)

11

011

(IV)

Он начинает по очереди извлекать их из «памяти» и сравнивать с принятым числом 10 111. Может быть, было передано 00 000? Нет, сходства здесь нет никакого: четыре знака принятого сигнала не совпадают с этим числом. Автомат продолжает действовать.

II комбинация (01 110) уже больше похожа на принятую, но и здесь не совпадают целых 3 знака. Зато III комбинация отличается только одним знаком: в памяти есть комбинация 10 101, а принято 10 111. Автомат делает вывод: передавалось число 10 101, но в момент передачи 4-го знака появилась помеха, и потому вместо 0 в приемник пришла лишняя единица. Такой код не требует повторений: автомат однажды «запомнил» истину и ни одного сообщения не принимает «на веру».

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное