Читаем Репортаж с ничейной земли. Рассказы об информации полностью

Но, оказывается, и случайность имеет свои законы. Непосвященным это покажется странным: случайность - и вдруг закон! Казалось бы, одно из двух: или есть какая-то закономерность, или все подчиняется воле случая. Однако случай случаю рознь. У каждого случая есть своя вероятность. Какова, например, вероятность того, что вслед за ст появится буква а? Как ее подсчитать? Для этого необходимо рассмотреть огромное количество самых разнообразных текстов и произвести строгий учет всех случаев появления сочетания ст. Если в результате такого учета, произведенного на многих тысячах слов, окажется, что из каждой сотни букв, появляющихся вслед за буквами ст, буква аповторяется в среднем пять раз, значит вероятность появления буквы а после букв с и т составляет 5 процентов. И самым любопытным является то, что, определив однажды вероятность появления буквы а, равную 5 процентам, мы обнаружим то же количество букв а в любом тексте, состоящем из достаточно большого числа букв. Не правда ли, странно: можно взять разные тексты - стихи, прозу, газетные сообщения и научный отчет; в любом из них среди каждой тысячи букв будет одно и то же количество а. Чем больше будет рассматриваться букв, тем точнее повторятся те же проценты. Да что далеко ходить за примерами! Подсчитайте число букв а на этой странице, а потом откройте наугад несколько других страниц. Если на них нет рисунков, то вы на всех страницах насчитаете почти равное количество а. Отчего это происходит? Оттого, что все случайности подчиняются одному закону: среди большого числа различных случайностей каждая из них (например, появление а) повторяется определенное количество раз. Это главный закон случайностей - закон больших чисел.

Если подсчитать, сколько раз встретится каждая буква алфавита после букв с и т, мы узнаем вероятность появления различных букв. И тогда окажется, что появление некоторых букв вслед за буквами с и т имеет большую вероятность (например, буквы е, о, а, р и т. п.), других букв - меньшую (например, ы - слово стычка или стык или в - стволстворка), а для многих букв вероятность будет вовсе равна нулю: ведь нельзя вспомнить ни одного слова, в котором за буквами ст следовали бы буквыб, г или щ. Значит, в передаваемом тексте появление тех или иных букв не является «чисто случайным»; между последующим и предыдущим значениями передаваемых букв существует определенная взаимосвязь.

Взаимосвязь между случайными влениями называется «корреляцией». Этим свойством обладают самые разнообразные случайные процессы.

Случайным является значение букв, переданных по телеграфу. Случайной является частота и громкость звука в то или иное мгновение радиопередачи, случайной является мгновенная яркость бегущего по экрану телевизора электронного луча.

Но все эти случайные процессы в той или иной степени обладают чудесным свойством корреляции: и яркость луча, и звучание той или иной ноты связаны с той яркостью и тем звучанием, которые имели место несколько мгновений назад. Эта связь - основа гармонии музыкальных мелодий, плавных переходов от света к тени, тонов и полутонов.

Корреляция - основа порядка. Если бы по какой-либо невероятной причине все процессы вдруг лишились этого свойства, то телеграфные тексты мгновенно превратились бы в бессмысленную буквенную россыпь, музыка зазвучала бы, как шум водопада. а изображение на экране телевизора стало похожим на снежный буран. Язык, в котором все сочетания букв имели бы равное право на существование, выглядел бы довольно странно, потому что рядом с привычными в этом языке существовали бы и такие «слова», как пакртчмынъиюа, и другие, лишенные смысла и часто вовсе не произносимые сочетания букв.

На самом деле все тексты обладают свойством корреляции, и потому только около 0,0002 процента возможных буквенных сочетаний составляют осмысленные слова. И это не удивительно, ведь существует целый ряд сочетаний, запрещенных законами русской грамматики. Значит, их вероятность равна нулю. Так, например, вслед за буквой ч никогда не последуют буквы ы, я или ю, а в начале слова или после любой из гласных мы никогда, ни в одном тексте не увидим мягкий знак.

Бесконечное множество различных процессов обладает свойствами корреляции. Помимо букв, звуков, изображений, по тем же законам могут меняться значения токов, давлений, скоростей и температур. Но математика смогла обобщить все явления, в которых случайные значения скорости, яркости или буквы зависят от тех значений, которые имели место мгновение назад. Она назвала их «марковскими процессами» - по имени русского математика Маркова, который первым исследовал подобные процессы.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное

Все жанры