Для расчета максимального приоритета ресурса мы должны сначала составить список задач, имеющих доступ к ресурсу -- так как фреймворк RTIC форсирует контроль доступа к ресурсам на этапе компиляции, он также имеет доступ к этой информации на этапе компиляции. Максимальный приоритет ресурса - просто наивысший логический приоритет среди этих задач.
init и idle не настоящие задачи, но у них есть доступ к ресурсам, поэтому они должны учитываться при анализе приоритетов. idle учитывается как задача, имеющая логический приоритет 0, в то время как init полностью исключается из анализа -- причина этому в том, что init никогда не использует (не нуждается) критические секции для доступа к статическим переменным.
В предыдущем разделе мы показывали, что разделяемые ресусы могут быть представлены уникальными ссылками (&mut-) или скрываться за прокси в зависимости от того, имеет ли задача к ним доступ. Какой из вариантов представляется задаче зависит от приоритета задачи и максимального приоритета ресурса. Если приоритет задачи такой же, как максимальный приоритет ресурса, тогда задача получает уникальную ссылку (&mut-) на память ресурса, в противном случае задача получает прокси -- это также касается idle. init особеннвй: он всегда получает уникальные ссылки (&mut-) на ресурсы.
Пример для иллюстрации анализа приоритетов:
#![allow(unused)]
fn main() {
#[rtic::app(device = ..)]
mod app {
struct Resources {
#[init(0)]
x: u64,
#[init(0)]
y: u64,
}
#[init(resources = [x])]
fn init(c: init::Context) {
let x: &mut u64 = c.resources.x;
let y: &mut u64 = c.resources.y;
}
#[idle(resources = [y])]
fn idle(c: idle::Context) -> ! {
let y: &'static mut u64 = c.resources.y;
loop {
}
}
#[interrupt(binds = UART0, priority = 1, resources = [x])]
fn foo(c: foo::Context) {
let x: resources::x = c.resources.x;
}
#[interrupt(binds = UART1, priority = 2, resources = [x])]
fn bar(c: foo::Context) {
let x: &mut u64 = c.resources.x;
}
}
}
RTIC поддерживает программные и аппаратные задачи. Каждая аппаратная задача назначается на отдельный обработчик прерывания. С другой стороны, несколько программных задач могут управляться одним обработчиком прерывания -- это сделано, чтобы минимизировать количество обработчиков прерывания, используемых фреймворком.
Фреймворк группирует задачи, для которых вызывается spawn по уровню приоритета, и генерирует один
Каждый диспетчер задач хранит
Очередь готовности - неблокируемая очередь типа SPSC (один производитель - один потребитель). Диспетчер задач владеет конечным потребителем в очереди; конечным производителем считается ресурс, за который соперничают задачи, которые могут вызывать (spawn) другие задачи.