Читаем Разведка далеких планет полностью

Исторически поддержание формы оптических элементов телескопа основывалось на их жесткости. Как мы уже знаем, к концу XIX в. телескопы — рефракторы приблизились к своему пределу: с ростом диаметра и веса линз поддерживать их форму становилось все сложнее, поскольку крепление линзы возможно лишь по ее периметру. Когда диаметр линзовых объективов достиг 1 м, технические возможности оказались исчерпаны: два крупнейших в мире линзовых телескопа: рефракторы Ликской (91 см) и Йерксской (102 см) обсерваторий — никогда не будут превзойдены, во всяком случае до тех пор, пока линзы делают из стекла, а сами телескопы располагаются на поверхности Земли, в условиях обычной силы тяжести.

Рис. 3.28. Принципиальная схема системы активной оптики, применяемой на Европейской южной обсерватории.

Проблему деформации объектива удалось решить путем перехода к телескопам — рефлекторам: жесткая монтировка телескопа поддерживает зеркальный диск объектива по всей его нижней поверхности, препятствуя изгибу. Теперь такие оптические системы называют пассивными. Вес зеркала удавалось значительно снизить без потери жесткости, придав ему форму пчелиных сот и оставив сплошной только верхнюю, зеркальную поверхность. Наконец, для наиболее крупных зеркал диаметром 2,5–6,0 м была разработана механическая система разгрузки. Она поддерживает зеркало снизу в нескольких точках так, что сила упора зависит от положения телескопа: чем ближе к зениту смотрит телескоп, а значит, чем более горизонтально расположено его главное зеркало, тем сильнее упираются в него снизу поддерживающие «пальцы», не позволяя зеркалу прогибаться. Фактически это стало первым шагом к системе активной оптики.

Главная особенность современных астрономических систем активной оптики — электронная линия обратной связи, позволяющая контролировать качество изображения и при необходимости исправлять его, управляя деформацией главного зеркала и перемещая вторичное зеркало телескопа. Контроль выполняется по изображению гидировочной звезды, которая выбирается на небе вблизи от изучаемого объекта и одновременно используется для точного ведения телескопа за объектом (гидирования). Размещенный у выходного зрачка телескопа анализатор волнового фронта исследует изображение звезды, пропущенное через матрицу из множества небольших линз (например, 30x30 линз). Каждая линза строит изображение звезды, которое регистрируется ПЗС — камерой. Разработано несколько способов выявления кривизны волнового фронта: по взаимному положению изображений, построенных каждой линзой, по степени их контраста и др. Чтобы результат анализа не зависел от случайного атмосферного дрожания изображения, измерения накапливаются и усредняются на интервалах в 20–30 секунд. По данным анализатора волнового фронта компьютер вырабатывает управляющие сигналы, которые усиливаются и передаются на многочисленные механические домкраты (актюаторы), упирающиеся снизу с необходимым усилием в главное зеркало, а также слегка перемещающие вторичное зеркало.

Рис. 3.29. Оправа главного зеркала одного из телескопов VLT. Видны выступающие вверх «пальцы» 150 актюаторов, управляющих формой 8,2–метрового зеркала.Рис. 3.30. Актюаторы главного зеркала VLT.

При наличии системы активной оптики требования к главному зеркалу телескопа меняются принципиально: оно должно быть не предельно жестким, как раньше, а достаточно мягким, чтобы поддаваться управлению. Поэтому у современных крупных телескопов главное зеркало либо относительно тонкое (например, при диаметре 8–9 м имеет толщину всего 20 см), либо состоит из нескольких независимых элементов (например, у 10–метровых телескопов «Кек-1» и «Кек-2» главное зеркало составляют 36 гексагональных двухметровых пластин). Тонкое и легкое зеркало объектива позволяет существенно облегчить всю конструкцию телескопа. К тому же такое зеркало быстро принимает температуру окружающего воздуха, а это снимает проблему термических деформаций.

Рис. 3.31. Зеркало диаметром 8,3 м японского телескопа «Субару» в процессе монтажа.Рис. 3.32. Телескоп «Субару» в башне на вершине Мауна-Кеа. При диаметре зеркала 8,3 м телескоп весит 500 т. Фокусное расстояние главного зеркала 15 м.Рис. 3.33. Зеркало телескопа «Субару» в процессе тестирования (до алюминирования). Изготовлено оно из стекла ULE (ultralow thermal expansion glass). Обратите внимание на его малую толщину — всего 20 см. Вес зеркала 22,8 т. Его формой управляет 261 актюатор.
Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука